x uchun yechish
x=-\frac{3}{4}=-0,75
x=0
Grafik
Baham ko'rish
Klipbordga nusxa olish
9x^{2}+6x+1=x^{2}+1
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(3x+1\right)^{2} kengaytirilishi uchun ishlating.
9x^{2}+6x+1-x^{2}=1
Ikkala tarafdan x^{2} ni ayirish.
8x^{2}+6x+1=1
8x^{2} ni olish uchun 9x^{2} va -x^{2} ni birlashtirish.
8x^{2}+6x+1-1=0
Ikkala tarafdan 1 ni ayirish.
8x^{2}+6x=0
0 olish uchun 1 dan 1 ni ayirish.
x\left(8x+6\right)=0
x omili.
x=0 x=-\frac{3}{4}
Tenglamani yechish uchun x=0 va 8x+6=0 ni yeching.
9x^{2}+6x+1=x^{2}+1
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(3x+1\right)^{2} kengaytirilishi uchun ishlating.
9x^{2}+6x+1-x^{2}=1
Ikkala tarafdan x^{2} ni ayirish.
8x^{2}+6x+1=1
8x^{2} ni olish uchun 9x^{2} va -x^{2} ni birlashtirish.
8x^{2}+6x+1-1=0
Ikkala tarafdan 1 ni ayirish.
8x^{2}+6x=0
0 olish uchun 1 dan 1 ni ayirish.
x=\frac{-6±\sqrt{6^{2}}}{2\times 8}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 8 ni a, 6 ni b va 0 ni c bilan almashtiring.
x=\frac{-6±6}{2\times 8}
6^{2} ning kvadrat ildizini chiqarish.
x=\frac{-6±6}{16}
2 ni 8 marotabaga ko'paytirish.
x=\frac{0}{16}
x=\frac{-6±6}{16} tenglamasini yeching, bunda ± musbat. -6 ni 6 ga qo'shish.
x=0
0 ni 16 ga bo'lish.
x=-\frac{12}{16}
x=\frac{-6±6}{16} tenglamasini yeching, bunda ± manfiy. -6 dan 6 ni ayirish.
x=-\frac{3}{4}
\frac{-12}{16} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=0 x=-\frac{3}{4}
Tenglama yechildi.
9x^{2}+6x+1=x^{2}+1
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(3x+1\right)^{2} kengaytirilishi uchun ishlating.
9x^{2}+6x+1-x^{2}=1
Ikkala tarafdan x^{2} ni ayirish.
8x^{2}+6x+1=1
8x^{2} ni olish uchun 9x^{2} va -x^{2} ni birlashtirish.
8x^{2}+6x=1-1
Ikkala tarafdan 1 ni ayirish.
8x^{2}+6x=0
0 olish uchun 1 dan 1 ni ayirish.
\frac{8x^{2}+6x}{8}=\frac{0}{8}
Ikki tarafini 8 ga bo‘ling.
x^{2}+\frac{6}{8}x=\frac{0}{8}
8 ga bo'lish 8 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{3}{4}x=\frac{0}{8}
\frac{6}{8} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{3}{4}x=0
0 ni 8 ga bo'lish.
x^{2}+\frac{3}{4}x+\left(\frac{3}{8}\right)^{2}=\left(\frac{3}{8}\right)^{2}
\frac{3}{4} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{3}{8} olish uchun. Keyin, \frac{3}{8} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{3}{4}x+\frac{9}{64}=\frac{9}{64}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{3}{8} kvadratini chiqarish.
\left(x+\frac{3}{8}\right)^{2}=\frac{9}{64}
x^{2}+\frac{3}{4}x+\frac{9}{64} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{3}{8}\right)^{2}}=\sqrt{\frac{9}{64}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{3}{8}=\frac{3}{8} x+\frac{3}{8}=-\frac{3}{8}
Qisqartirish.
x=0 x=-\frac{3}{4}
Tenglamaning ikkala tarafidan \frac{3}{8} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}