x uchun yechish
x = \frac{3}{2} = 1\frac{1}{2} = 1,5
x = -\frac{3}{2} = -1\frac{1}{2} = -1,5
Grafik
Baham ko'rish
Klipbordga nusxa olish
3^{2}x^{2}+6^{2}=\left(5x\right)^{2}
\left(3x\right)^{2} ni kengaytirish.
9x^{2}+6^{2}=\left(5x\right)^{2}
2 daraja ko‘rsatkichini 3 ga hisoblang va 9 ni qiymatni oling.
9x^{2}+36=\left(5x\right)^{2}
2 daraja ko‘rsatkichini 6 ga hisoblang va 36 ni qiymatni oling.
9x^{2}+36=5^{2}x^{2}
\left(5x\right)^{2} ni kengaytirish.
9x^{2}+36=25x^{2}
2 daraja ko‘rsatkichini 5 ga hisoblang va 25 ni qiymatni oling.
9x^{2}+36-25x^{2}=0
Ikkala tarafdan 25x^{2} ni ayirish.
-16x^{2}+36=0
-16x^{2} ni olish uchun 9x^{2} va -25x^{2} ni birlashtirish.
-16x^{2}=-36
Ikkala tarafdan 36 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
x^{2}=\frac{-36}{-16}
Ikki tarafini -16 ga bo‘ling.
x^{2}=\frac{9}{4}
\frac{-36}{-16} ulushini -4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{3}{2} x=-\frac{3}{2}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
3^{2}x^{2}+6^{2}=\left(5x\right)^{2}
\left(3x\right)^{2} ni kengaytirish.
9x^{2}+6^{2}=\left(5x\right)^{2}
2 daraja ko‘rsatkichini 3 ga hisoblang va 9 ni qiymatni oling.
9x^{2}+36=\left(5x\right)^{2}
2 daraja ko‘rsatkichini 6 ga hisoblang va 36 ni qiymatni oling.
9x^{2}+36=5^{2}x^{2}
\left(5x\right)^{2} ni kengaytirish.
9x^{2}+36=25x^{2}
2 daraja ko‘rsatkichini 5 ga hisoblang va 25 ni qiymatni oling.
9x^{2}+36-25x^{2}=0
Ikkala tarafdan 25x^{2} ni ayirish.
-16x^{2}+36=0
-16x^{2} ni olish uchun 9x^{2} va -25x^{2} ni birlashtirish.
x=\frac{0±\sqrt{0^{2}-4\left(-16\right)\times 36}}{2\left(-16\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -16 ni a, 0 ni b va 36 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\left(-16\right)\times 36}}{2\left(-16\right)}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{64\times 36}}{2\left(-16\right)}
-4 ni -16 marotabaga ko'paytirish.
x=\frac{0±\sqrt{2304}}{2\left(-16\right)}
64 ni 36 marotabaga ko'paytirish.
x=\frac{0±48}{2\left(-16\right)}
2304 ning kvadrat ildizini chiqarish.
x=\frac{0±48}{-32}
2 ni -16 marotabaga ko'paytirish.
x=-\frac{3}{2}
x=\frac{0±48}{-32} tenglamasini yeching, bunda ± musbat. \frac{48}{-32} ulushini 16 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{3}{2}
x=\frac{0±48}{-32} tenglamasini yeching, bunda ± manfiy. \frac{-48}{-32} ulushini 16 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=-\frac{3}{2} x=\frac{3}{2}
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}