Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

4x^{2}-12x+9-\left(x-5\right)^{2}=-23
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(2x-3\right)^{2} kengaytirilishi uchun ishlating.
4x^{2}-12x+9-\left(x^{2}-10x+25\right)=-23
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-5\right)^{2} kengaytirilishi uchun ishlating.
4x^{2}-12x+9-x^{2}+10x-25=-23
x^{2}-10x+25 teskarisini topish uchun har birining teskarisini toping.
3x^{2}-12x+9+10x-25=-23
3x^{2} ni olish uchun 4x^{2} va -x^{2} ni birlashtirish.
3x^{2}-2x+9-25=-23
-2x ni olish uchun -12x va 10x ni birlashtirish.
3x^{2}-2x-16=-23
-16 olish uchun 9 dan 25 ni ayirish.
3x^{2}-2x-16+23=0
23 ni ikki tarafga qo’shing.
3x^{2}-2x+7=0
7 olish uchun -16 va 23'ni qo'shing.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 3\times 7}}{2\times 3}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 3 ni a, -2 ni b va 7 ni c bilan almashtiring.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 3\times 7}}{2\times 3}
-2 kvadratini chiqarish.
x=\frac{-\left(-2\right)±\sqrt{4-12\times 7}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
x=\frac{-\left(-2\right)±\sqrt{4-84}}{2\times 3}
-12 ni 7 marotabaga ko'paytirish.
x=\frac{-\left(-2\right)±\sqrt{-80}}{2\times 3}
4 ni -84 ga qo'shish.
x=\frac{-\left(-2\right)±4\sqrt{5}i}{2\times 3}
-80 ning kvadrat ildizini chiqarish.
x=\frac{2±4\sqrt{5}i}{2\times 3}
-2 ning teskarisi 2 ga teng.
x=\frac{2±4\sqrt{5}i}{6}
2 ni 3 marotabaga ko'paytirish.
x=\frac{2+4\sqrt{5}i}{6}
x=\frac{2±4\sqrt{5}i}{6} tenglamasini yeching, bunda ± musbat. 2 ni 4i\sqrt{5} ga qo'shish.
x=\frac{1+2\sqrt{5}i}{3}
2+4i\sqrt{5} ni 6 ga bo'lish.
x=\frac{-4\sqrt{5}i+2}{6}
x=\frac{2±4\sqrt{5}i}{6} tenglamasini yeching, bunda ± manfiy. 2 dan 4i\sqrt{5} ni ayirish.
x=\frac{-2\sqrt{5}i+1}{3}
2-4i\sqrt{5} ni 6 ga bo'lish.
x=\frac{1+2\sqrt{5}i}{3} x=\frac{-2\sqrt{5}i+1}{3}
Tenglama yechildi.
4x^{2}-12x+9-\left(x-5\right)^{2}=-23
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(2x-3\right)^{2} kengaytirilishi uchun ishlating.
4x^{2}-12x+9-\left(x^{2}-10x+25\right)=-23
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-5\right)^{2} kengaytirilishi uchun ishlating.
4x^{2}-12x+9-x^{2}+10x-25=-23
x^{2}-10x+25 teskarisini topish uchun har birining teskarisini toping.
3x^{2}-12x+9+10x-25=-23
3x^{2} ni olish uchun 4x^{2} va -x^{2} ni birlashtirish.
3x^{2}-2x+9-25=-23
-2x ni olish uchun -12x va 10x ni birlashtirish.
3x^{2}-2x-16=-23
-16 olish uchun 9 dan 25 ni ayirish.
3x^{2}-2x=-23+16
16 ni ikki tarafga qo’shing.
3x^{2}-2x=-7
-7 olish uchun -23 va 16'ni qo'shing.
\frac{3x^{2}-2x}{3}=-\frac{7}{3}
Ikki tarafini 3 ga bo‘ling.
x^{2}-\frac{2}{3}x=-\frac{7}{3}
3 ga bo'lish 3 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{2}{3}x+\left(-\frac{1}{3}\right)^{2}=-\frac{7}{3}+\left(-\frac{1}{3}\right)^{2}
-\frac{2}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{3} olish uchun. Keyin, -\frac{1}{3} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{2}{3}x+\frac{1}{9}=-\frac{7}{3}+\frac{1}{9}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{3} kvadratini chiqarish.
x^{2}-\frac{2}{3}x+\frac{1}{9}=-\frac{20}{9}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{7}{3} ni \frac{1}{9} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{1}{3}\right)^{2}=-\frac{20}{9}
x^{2}-\frac{2}{3}x+\frac{1}{9} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{-\frac{20}{9}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{3}=\frac{2\sqrt{5}i}{3} x-\frac{1}{3}=-\frac{2\sqrt{5}i}{3}
Qisqartirish.
x=\frac{1+2\sqrt{5}i}{3} x=\frac{-2\sqrt{5}i+1}{3}
\frac{1}{3} ni tenglamaning ikkala tarafiga qo'shish.