x uchun yechish (complex solution)
x=\frac{-5+\sqrt{71}i}{8}\approx -0,625+1,053268722i
x=\frac{-\sqrt{71}i-5}{8}\approx -0,625-1,053268722i
Grafik
Baham ko'rish
Klipbordga nusxa olish
2^{2}x^{2}+5x+6=0
\left(2x\right)^{2} ni kengaytirish.
4x^{2}+5x+6=0
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
x=\frac{-5±\sqrt{5^{2}-4\times 4\times 6}}{2\times 4}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 4 ni a, 5 ni b va 6 ni c bilan almashtiring.
x=\frac{-5±\sqrt{25-4\times 4\times 6}}{2\times 4}
5 kvadratini chiqarish.
x=\frac{-5±\sqrt{25-16\times 6}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
x=\frac{-5±\sqrt{25-96}}{2\times 4}
-16 ni 6 marotabaga ko'paytirish.
x=\frac{-5±\sqrt{-71}}{2\times 4}
25 ni -96 ga qo'shish.
x=\frac{-5±\sqrt{71}i}{2\times 4}
-71 ning kvadrat ildizini chiqarish.
x=\frac{-5±\sqrt{71}i}{8}
2 ni 4 marotabaga ko'paytirish.
x=\frac{-5+\sqrt{71}i}{8}
x=\frac{-5±\sqrt{71}i}{8} tenglamasini yeching, bunda ± musbat. -5 ni i\sqrt{71} ga qo'shish.
x=\frac{-\sqrt{71}i-5}{8}
x=\frac{-5±\sqrt{71}i}{8} tenglamasini yeching, bunda ± manfiy. -5 dan i\sqrt{71} ni ayirish.
x=\frac{-5+\sqrt{71}i}{8} x=\frac{-\sqrt{71}i-5}{8}
Tenglama yechildi.
2^{2}x^{2}+5x+6=0
\left(2x\right)^{2} ni kengaytirish.
4x^{2}+5x+6=0
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
4x^{2}+5x=-6
Ikkala tarafdan 6 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
\frac{4x^{2}+5x}{4}=-\frac{6}{4}
Ikki tarafini 4 ga bo‘ling.
x^{2}+\frac{5}{4}x=-\frac{6}{4}
4 ga bo'lish 4 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{5}{4}x=-\frac{3}{2}
\frac{-6}{4} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{5}{4}x+\left(\frac{5}{8}\right)^{2}=-\frac{3}{2}+\left(\frac{5}{8}\right)^{2}
\frac{5}{4} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{5}{8} olish uchun. Keyin, \frac{5}{8} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{5}{4}x+\frac{25}{64}=-\frac{3}{2}+\frac{25}{64}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{5}{8} kvadratini chiqarish.
x^{2}+\frac{5}{4}x+\frac{25}{64}=-\frac{71}{64}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{3}{2} ni \frac{25}{64} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{5}{8}\right)^{2}=-\frac{71}{64}
x^{2}+\frac{5}{4}x+\frac{25}{64} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{5}{8}\right)^{2}}=\sqrt{-\frac{71}{64}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{5}{8}=\frac{\sqrt{71}i}{8} x+\frac{5}{8}=-\frac{\sqrt{71}i}{8}
Qisqartirish.
x=\frac{-5+\sqrt{71}i}{8} x=\frac{-\sqrt{71}i-5}{8}
Tenglamaning ikkala tarafidan \frac{5}{8} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}