Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2^{2}\left(\sqrt{3}\right)^{2}=\frac{1}{2}x\left(6+x\right)
\left(2\sqrt{3}\right)^{2} ni kengaytirish.
4\left(\sqrt{3}\right)^{2}=\frac{1}{2}x\left(6+x\right)
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
4\times 3=\frac{1}{2}x\left(6+x\right)
\sqrt{3} kvadrati – 3.
12=\frac{1}{2}x\left(6+x\right)
12 hosil qilish uchun 4 va 3 ni ko'paytirish.
12=3x+\frac{1}{2}x^{2}
\frac{1}{2}x ga 6+x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x+\frac{1}{2}x^{2}=12
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
3x+\frac{1}{2}x^{2}-12=0
Ikkala tarafdan 12 ni ayirish.
\frac{1}{2}x^{2}+3x-12=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-3±\sqrt{3^{2}-4\times \frac{1}{2}\left(-12\right)}}{2\times \frac{1}{2}}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} \frac{1}{2} ni a, 3 ni b va -12 ni c bilan almashtiring.
x=\frac{-3±\sqrt{9-4\times \frac{1}{2}\left(-12\right)}}{2\times \frac{1}{2}}
3 kvadratini chiqarish.
x=\frac{-3±\sqrt{9-2\left(-12\right)}}{2\times \frac{1}{2}}
-4 ni \frac{1}{2} marotabaga ko'paytirish.
x=\frac{-3±\sqrt{9+24}}{2\times \frac{1}{2}}
-2 ni -12 marotabaga ko'paytirish.
x=\frac{-3±\sqrt{33}}{2\times \frac{1}{2}}
9 ni 24 ga qo'shish.
x=\frac{-3±\sqrt{33}}{1}
2 ni \frac{1}{2} marotabaga ko'paytirish.
x=\frac{\sqrt{33}-3}{1}
x=\frac{-3±\sqrt{33}}{1} tenglamasini yeching, bunda ± musbat. -3 ni \sqrt{33} ga qo'shish.
x=\sqrt{33}-3
-3+\sqrt{33} ni 1 ga bo'lish.
x=\frac{-\sqrt{33}-3}{1}
x=\frac{-3±\sqrt{33}}{1} tenglamasini yeching, bunda ± manfiy. -3 dan \sqrt{33} ni ayirish.
x=-\sqrt{33}-3
-3-\sqrt{33} ni 1 ga bo'lish.
x=\sqrt{33}-3 x=-\sqrt{33}-3
Tenglama yechildi.
2^{2}\left(\sqrt{3}\right)^{2}=\frac{1}{2}x\left(6+x\right)
\left(2\sqrt{3}\right)^{2} ni kengaytirish.
4\left(\sqrt{3}\right)^{2}=\frac{1}{2}x\left(6+x\right)
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
4\times 3=\frac{1}{2}x\left(6+x\right)
\sqrt{3} kvadrati – 3.
12=\frac{1}{2}x\left(6+x\right)
12 hosil qilish uchun 4 va 3 ni ko'paytirish.
12=3x+\frac{1}{2}x^{2}
\frac{1}{2}x ga 6+x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x+\frac{1}{2}x^{2}=12
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
\frac{1}{2}x^{2}+3x=12
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{\frac{1}{2}x^{2}+3x}{\frac{1}{2}}=\frac{12}{\frac{1}{2}}
Ikkala tarafini 2 ga ko‘paytiring.
x^{2}+\frac{3}{\frac{1}{2}}x=\frac{12}{\frac{1}{2}}
\frac{1}{2} ga bo'lish \frac{1}{2} ga ko'paytirishni bekor qiladi.
x^{2}+6x=\frac{12}{\frac{1}{2}}
3 ni \frac{1}{2} ga bo'lish 3 ga k'paytirish \frac{1}{2} ga qaytarish.
x^{2}+6x=24
12 ni \frac{1}{2} ga bo'lish 12 ga k'paytirish \frac{1}{2} ga qaytarish.
x^{2}+6x+3^{2}=24+3^{2}
6 ni bo‘lish, x shartining koeffitsienti, 2 ga 3 olish uchun. Keyin, 3 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+6x+9=24+9
3 kvadratini chiqarish.
x^{2}+6x+9=33
24 ni 9 ga qo'shish.
\left(x+3\right)^{2}=33
x^{2}+6x+9 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+3\right)^{2}}=\sqrt{33}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+3=\sqrt{33} x+3=-\sqrt{33}
Qisqartirish.
x=\sqrt{33}-3 x=-\sqrt{33}-3
Tenglamaning ikkala tarafidan 3 ni ayirish.
2^{2}\left(\sqrt{3}\right)^{2}=\frac{1}{2}x\left(6+x\right)
\left(2\sqrt{3}\right)^{2} ni kengaytirish.
4\left(\sqrt{3}\right)^{2}=\frac{1}{2}x\left(6+x\right)
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
4\times 3=\frac{1}{2}x\left(6+x\right)
\sqrt{3} kvadrati – 3.
12=\frac{1}{2}x\left(6+x\right)
12 hosil qilish uchun 4 va 3 ni ko'paytirish.
12=3x+\frac{1}{2}x^{2}
\frac{1}{2}x ga 6+x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x+\frac{1}{2}x^{2}=12
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
3x+\frac{1}{2}x^{2}-12=0
Ikkala tarafdan 12 ni ayirish.
\frac{1}{2}x^{2}+3x-12=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-3±\sqrt{3^{2}-4\times \frac{1}{2}\left(-12\right)}}{2\times \frac{1}{2}}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} \frac{1}{2} ni a, 3 ni b va -12 ni c bilan almashtiring.
x=\frac{-3±\sqrt{9-4\times \frac{1}{2}\left(-12\right)}}{2\times \frac{1}{2}}
3 kvadratini chiqarish.
x=\frac{-3±\sqrt{9-2\left(-12\right)}}{2\times \frac{1}{2}}
-4 ni \frac{1}{2} marotabaga ko'paytirish.
x=\frac{-3±\sqrt{9+24}}{2\times \frac{1}{2}}
-2 ni -12 marotabaga ko'paytirish.
x=\frac{-3±\sqrt{33}}{2\times \frac{1}{2}}
9 ni 24 ga qo'shish.
x=\frac{-3±\sqrt{33}}{1}
2 ni \frac{1}{2} marotabaga ko'paytirish.
x=\frac{\sqrt{33}-3}{1}
x=\frac{-3±\sqrt{33}}{1} tenglamasini yeching, bunda ± musbat. -3 ni \sqrt{33} ga qo'shish.
x=\sqrt{33}-3
-3+\sqrt{33} ni 1 ga bo'lish.
x=\frac{-\sqrt{33}-3}{1}
x=\frac{-3±\sqrt{33}}{1} tenglamasini yeching, bunda ± manfiy. -3 dan \sqrt{33} ni ayirish.
x=-\sqrt{33}-3
-3-\sqrt{33} ni 1 ga bo'lish.
x=\sqrt{33}-3 x=-\sqrt{33}-3
Tenglama yechildi.
2^{2}\left(\sqrt{3}\right)^{2}=\frac{1}{2}x\left(6+x\right)
\left(2\sqrt{3}\right)^{2} ni kengaytirish.
4\left(\sqrt{3}\right)^{2}=\frac{1}{2}x\left(6+x\right)
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
4\times 3=\frac{1}{2}x\left(6+x\right)
\sqrt{3} kvadrati – 3.
12=\frac{1}{2}x\left(6+x\right)
12 hosil qilish uchun 4 va 3 ni ko'paytirish.
12=3x+\frac{1}{2}x^{2}
\frac{1}{2}x ga 6+x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x+\frac{1}{2}x^{2}=12
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
\frac{1}{2}x^{2}+3x=12
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{\frac{1}{2}x^{2}+3x}{\frac{1}{2}}=\frac{12}{\frac{1}{2}}
Ikkala tarafini 2 ga ko‘paytiring.
x^{2}+\frac{3}{\frac{1}{2}}x=\frac{12}{\frac{1}{2}}
\frac{1}{2} ga bo'lish \frac{1}{2} ga ko'paytirishni bekor qiladi.
x^{2}+6x=\frac{12}{\frac{1}{2}}
3 ni \frac{1}{2} ga bo'lish 3 ga k'paytirish \frac{1}{2} ga qaytarish.
x^{2}+6x=24
12 ni \frac{1}{2} ga bo'lish 12 ga k'paytirish \frac{1}{2} ga qaytarish.
x^{2}+6x+3^{2}=24+3^{2}
6 ni bo‘lish, x shartining koeffitsienti, 2 ga 3 olish uchun. Keyin, 3 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+6x+9=24+9
3 kvadratini chiqarish.
x^{2}+6x+9=33
24 ni 9 ga qo'shish.
\left(x+3\right)^{2}=33
x^{2}+6x+9 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+3\right)^{2}}=\sqrt{33}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+3=\sqrt{33} x+3=-\sqrt{33}
Qisqartirish.
x=\sqrt{33}-3 x=-\sqrt{33}-3
Tenglamaning ikkala tarafidan 3 ni ayirish.