x uchun yechish
x=\frac{1}{4}=0,25
x=\frac{3}{7}\approx 0,428571429
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(0\sqrt{3}x\right)^{2}+\left(5-15x\right)^{2}=\left(1+x\right)^{2}
0 hosil qilish uchun 0 va 5 ni ko'paytirish.
0^{2}+\left(5-15x\right)^{2}=\left(1+x\right)^{2}
Har qanday sonni nolga ko‘paytirsangiz, nol chiqadi.
0+\left(5-15x\right)^{2}=\left(1+x\right)^{2}
2 daraja ko‘rsatkichini 0 ga hisoblang va 0 ni qiymatni oling.
0+25-150x+225x^{2}=\left(1+x\right)^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(5-15x\right)^{2} kengaytirilishi uchun ishlating.
25-150x+225x^{2}=\left(1+x\right)^{2}
25 olish uchun 0 va 25'ni qo'shing.
25-150x+225x^{2}=1+2x+x^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(1+x\right)^{2} kengaytirilishi uchun ishlating.
25-150x+225x^{2}-1=2x+x^{2}
Ikkala tarafdan 1 ni ayirish.
24-150x+225x^{2}=2x+x^{2}
24 olish uchun 25 dan 1 ni ayirish.
24-150x+225x^{2}-2x=x^{2}
Ikkala tarafdan 2x ni ayirish.
24-152x+225x^{2}=x^{2}
-152x ni olish uchun -150x va -2x ni birlashtirish.
24-152x+225x^{2}-x^{2}=0
Ikkala tarafdan x^{2} ni ayirish.
24-152x+224x^{2}=0
224x^{2} ni olish uchun 225x^{2} va -x^{2} ni birlashtirish.
224x^{2}-152x+24=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-152\right)±\sqrt{\left(-152\right)^{2}-4\times 224\times 24}}{2\times 224}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 224 ni a, -152 ni b va 24 ni c bilan almashtiring.
x=\frac{-\left(-152\right)±\sqrt{23104-4\times 224\times 24}}{2\times 224}
-152 kvadratini chiqarish.
x=\frac{-\left(-152\right)±\sqrt{23104-896\times 24}}{2\times 224}
-4 ni 224 marotabaga ko'paytirish.
x=\frac{-\left(-152\right)±\sqrt{23104-21504}}{2\times 224}
-896 ni 24 marotabaga ko'paytirish.
x=\frac{-\left(-152\right)±\sqrt{1600}}{2\times 224}
23104 ni -21504 ga qo'shish.
x=\frac{-\left(-152\right)±40}{2\times 224}
1600 ning kvadrat ildizini chiqarish.
x=\frac{152±40}{2\times 224}
-152 ning teskarisi 152 ga teng.
x=\frac{152±40}{448}
2 ni 224 marotabaga ko'paytirish.
x=\frac{192}{448}
x=\frac{152±40}{448} tenglamasini yeching, bunda ± musbat. 152 ni 40 ga qo'shish.
x=\frac{3}{7}
\frac{192}{448} ulushini 64 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{112}{448}
x=\frac{152±40}{448} tenglamasini yeching, bunda ± manfiy. 152 dan 40 ni ayirish.
x=\frac{1}{4}
\frac{112}{448} ulushini 112 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{3}{7} x=\frac{1}{4}
Tenglama yechildi.
\left(0\sqrt{3}x\right)^{2}+\left(5-15x\right)^{2}=\left(1+x\right)^{2}
0 hosil qilish uchun 0 va 5 ni ko'paytirish.
0^{2}+\left(5-15x\right)^{2}=\left(1+x\right)^{2}
Har qanday sonni nolga ko‘paytirsangiz, nol chiqadi.
0+\left(5-15x\right)^{2}=\left(1+x\right)^{2}
2 daraja ko‘rsatkichini 0 ga hisoblang va 0 ni qiymatni oling.
0+25-150x+225x^{2}=\left(1+x\right)^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(5-15x\right)^{2} kengaytirilishi uchun ishlating.
25-150x+225x^{2}=\left(1+x\right)^{2}
25 olish uchun 0 va 25'ni qo'shing.
25-150x+225x^{2}=1+2x+x^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(1+x\right)^{2} kengaytirilishi uchun ishlating.
25-150x+225x^{2}-2x=1+x^{2}
Ikkala tarafdan 2x ni ayirish.
25-152x+225x^{2}=1+x^{2}
-152x ni olish uchun -150x va -2x ni birlashtirish.
25-152x+225x^{2}-x^{2}=1
Ikkala tarafdan x^{2} ni ayirish.
25-152x+224x^{2}=1
224x^{2} ni olish uchun 225x^{2} va -x^{2} ni birlashtirish.
-152x+224x^{2}=1-25
Ikkala tarafdan 25 ni ayirish.
-152x+224x^{2}=-24
-24 olish uchun 1 dan 25 ni ayirish.
224x^{2}-152x=-24
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{224x^{2}-152x}{224}=-\frac{24}{224}
Ikki tarafini 224 ga bo‘ling.
x^{2}+\left(-\frac{152}{224}\right)x=-\frac{24}{224}
224 ga bo'lish 224 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{19}{28}x=-\frac{24}{224}
\frac{-152}{224} ulushini 8 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{19}{28}x=-\frac{3}{28}
\frac{-24}{224} ulushini 8 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{19}{28}x+\left(-\frac{19}{56}\right)^{2}=-\frac{3}{28}+\left(-\frac{19}{56}\right)^{2}
-\frac{19}{28} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{19}{56} olish uchun. Keyin, -\frac{19}{56} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{19}{28}x+\frac{361}{3136}=-\frac{3}{28}+\frac{361}{3136}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{19}{56} kvadratini chiqarish.
x^{2}-\frac{19}{28}x+\frac{361}{3136}=\frac{25}{3136}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{3}{28} ni \frac{361}{3136} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{19}{56}\right)^{2}=\frac{25}{3136}
x^{2}-\frac{19}{28}x+\frac{361}{3136} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{19}{56}\right)^{2}}=\sqrt{\frac{25}{3136}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{19}{56}=\frac{5}{56} x-\frac{19}{56}=-\frac{5}{56}
Qisqartirish.
x=\frac{3}{7} x=\frac{1}{4}
\frac{19}{56} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}