x uchun yechish
x=\frac{2y}{9}+\frac{5}{6}
y uchun yechish
y=\frac{9x}{2}-\frac{15}{4}
Grafik
Baham ko'rish
Klipbordga nusxa olish
9+6x+x^{2}+\left(4-y\right)^{2}=\left(6-x\right)^{2}+\left(2-y\right)^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(-3-x\right)^{2} kengaytirilishi uchun ishlating.
9+6x+x^{2}+16-8y+y^{2}=\left(6-x\right)^{2}+\left(2-y\right)^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(4-y\right)^{2} kengaytirilishi uchun ishlating.
25+6x+x^{2}-8y+y^{2}=\left(6-x\right)^{2}+\left(2-y\right)^{2}
25 olish uchun 9 va 16'ni qo'shing.
25+6x+x^{2}-8y+y^{2}=36-12x+x^{2}+\left(2-y\right)^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(6-x\right)^{2} kengaytirilishi uchun ishlating.
25+6x+x^{2}-8y+y^{2}=36-12x+x^{2}+4-4y+y^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(2-y\right)^{2} kengaytirilishi uchun ishlating.
25+6x+x^{2}-8y+y^{2}=40-12x+x^{2}-4y+y^{2}
40 olish uchun 36 va 4'ni qo'shing.
25+6x+x^{2}-8y+y^{2}+12x=40+x^{2}-4y+y^{2}
12x ni ikki tarafga qo’shing.
25+18x+x^{2}-8y+y^{2}=40+x^{2}-4y+y^{2}
18x ni olish uchun 6x va 12x ni birlashtirish.
25+18x+x^{2}-8y+y^{2}-x^{2}=40-4y+y^{2}
Ikkala tarafdan x^{2} ni ayirish.
25+18x-8y+y^{2}=40-4y+y^{2}
0 ni olish uchun x^{2} va -x^{2} ni birlashtirish.
18x-8y+y^{2}=40-4y+y^{2}-25
Ikkala tarafdan 25 ni ayirish.
18x-8y+y^{2}=15-4y+y^{2}
15 olish uchun 40 dan 25 ni ayirish.
18x+y^{2}=15-4y+y^{2}+8y
8y ni ikki tarafga qo’shing.
18x+y^{2}=15+4y+y^{2}
4y ni olish uchun -4y va 8y ni birlashtirish.
18x=15+4y+y^{2}-y^{2}
Ikkala tarafdan y^{2} ni ayirish.
18x=15+4y
0 ni olish uchun y^{2} va -y^{2} ni birlashtirish.
18x=4y+15
Tenglama standart shaklda.
\frac{18x}{18}=\frac{4y+15}{18}
Ikki tarafini 18 ga bo‘ling.
x=\frac{4y+15}{18}
18 ga bo'lish 18 ga ko'paytirishni bekor qiladi.
x=\frac{2y}{9}+\frac{5}{6}
15+4y ni 18 ga bo'lish.
9+6x+x^{2}+\left(4-y\right)^{2}=\left(6-x\right)^{2}+\left(2-y\right)^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(-3-x\right)^{2} kengaytirilishi uchun ishlating.
9+6x+x^{2}+16-8y+y^{2}=\left(6-x\right)^{2}+\left(2-y\right)^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(4-y\right)^{2} kengaytirilishi uchun ishlating.
25+6x+x^{2}-8y+y^{2}=\left(6-x\right)^{2}+\left(2-y\right)^{2}
25 olish uchun 9 va 16'ni qo'shing.
25+6x+x^{2}-8y+y^{2}=36-12x+x^{2}+\left(2-y\right)^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(6-x\right)^{2} kengaytirilishi uchun ishlating.
25+6x+x^{2}-8y+y^{2}=36-12x+x^{2}+4-4y+y^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(2-y\right)^{2} kengaytirilishi uchun ishlating.
25+6x+x^{2}-8y+y^{2}=40-12x+x^{2}-4y+y^{2}
40 olish uchun 36 va 4'ni qo'shing.
25+6x+x^{2}-8y+y^{2}+4y=40-12x+x^{2}+y^{2}
4y ni ikki tarafga qo’shing.
25+6x+x^{2}-4y+y^{2}=40-12x+x^{2}+y^{2}
-4y ni olish uchun -8y va 4y ni birlashtirish.
25+6x+x^{2}-4y+y^{2}-y^{2}=40-12x+x^{2}
Ikkala tarafdan y^{2} ni ayirish.
25+6x+x^{2}-4y=40-12x+x^{2}
0 ni olish uchun y^{2} va -y^{2} ni birlashtirish.
6x+x^{2}-4y=40-12x+x^{2}-25
Ikkala tarafdan 25 ni ayirish.
6x+x^{2}-4y=15-12x+x^{2}
15 olish uchun 40 dan 25 ni ayirish.
x^{2}-4y=15-12x+x^{2}-6x
Ikkala tarafdan 6x ni ayirish.
x^{2}-4y=15-18x+x^{2}
-18x ni olish uchun -12x va -6x ni birlashtirish.
-4y=15-18x+x^{2}-x^{2}
Ikkala tarafdan x^{2} ni ayirish.
-4y=15-18x
0 ni olish uchun x^{2} va -x^{2} ni birlashtirish.
\frac{-4y}{-4}=\frac{15-18x}{-4}
Ikki tarafini -4 ga bo‘ling.
y=\frac{15-18x}{-4}
-4 ga bo'lish -4 ga ko'paytirishni bekor qiladi.
y=\frac{9x}{2}-\frac{15}{4}
15-18x ni -4 ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}