Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{100}{9}+\left(\frac{2\sqrt{73}}{3}\right)^{2}=2\times \left(\frac{\sqrt{52}}{3}\right)^{2}+2x^{2}
2 daraja ko‘rsatkichini \frac{10}{3} ga hisoblang va \frac{100}{9} ni qiymatni oling.
\frac{100}{9}+\frac{\left(2\sqrt{73}\right)^{2}}{3^{2}}=2\times \left(\frac{\sqrt{52}}{3}\right)^{2}+2x^{2}
\frac{2\sqrt{73}}{3}ni darajaga oshirish uchun, surat va maxrajni darajaga oshirib, keyin bo‘ling.
\frac{100}{9}+\frac{\left(2\sqrt{73}\right)^{2}}{9}=2\times \left(\frac{\sqrt{52}}{3}\right)^{2}+2x^{2}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 3^{2} ni kengaytirish.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=2\times \left(\frac{\sqrt{52}}{3}\right)^{2}+2x^{2}
\frac{100}{9} va \frac{\left(2\sqrt{73}\right)^{2}}{9} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=2\times \left(\frac{2\sqrt{13}}{3}\right)^{2}+2x^{2}
Faktor: 52=2^{2}\times 13. \sqrt{2^{2}\times 13} koʻpaytmasining kvadrat ildizini \sqrt{2^{2}}\sqrt{13} kvadrat ildizlarining koʻpaytmasi sifatida qayta yozing. 2^{2} ning kvadrat ildizini chiqarish.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=2\times \frac{\left(2\sqrt{13}\right)^{2}}{3^{2}}+2x^{2}
\frac{2\sqrt{13}}{3}ni darajaga oshirish uchun, surat va maxrajni darajaga oshirib, keyin bo‘ling.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}}{3^{2}}+2x^{2}
2\times \frac{\left(2\sqrt{13}\right)^{2}}{3^{2}} ni yagona kasrga aylantiring.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}}{3^{2}}+\frac{2x^{2}\times 3^{2}}{3^{2}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 2x^{2} ni \frac{3^{2}}{3^{2}} marotabaga ko'paytirish.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
\frac{2\times \left(2\sqrt{13}\right)^{2}}{3^{2}} va \frac{2x^{2}\times 3^{2}}{3^{2}} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{100+2^{2}\left(\sqrt{73}\right)^{2}}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
\left(2\sqrt{73}\right)^{2} ni kengaytirish.
\frac{100+4\left(\sqrt{73}\right)^{2}}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
\frac{100+4\times 73}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
\sqrt{73} kvadrati – 73.
\frac{100+292}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
292 hosil qilish uchun 4 va 73 ni ko'paytirish.
\frac{392}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
392 olish uchun 100 va 292'ni qo'shing.
\frac{392}{9}=\frac{2\times 2^{2}\left(\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
\left(2\sqrt{13}\right)^{2} ni kengaytirish.
\frac{392}{9}=\frac{2\times 4\left(\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
\frac{392}{9}=\frac{2\times 4\times 13+2x^{2}\times 3^{2}}{3^{2}}
\sqrt{13} kvadrati – 13.
\frac{392}{9}=\frac{2\times 52+2x^{2}\times 3^{2}}{3^{2}}
52 hosil qilish uchun 4 va 13 ni ko'paytirish.
\frac{392}{9}=\frac{104+2x^{2}\times 3^{2}}{3^{2}}
104 hosil qilish uchun 2 va 52 ni ko'paytirish.
\frac{392}{9}=\frac{104+2x^{2}\times 9}{3^{2}}
2 daraja ko‘rsatkichini 3 ga hisoblang va 9 ni qiymatni oling.
\frac{392}{9}=\frac{104+18x^{2}}{3^{2}}
18 hosil qilish uchun 2 va 9 ni ko'paytirish.
\frac{392}{9}=\frac{104+18x^{2}}{9}
2 daraja ko‘rsatkichini 3 ga hisoblang va 9 ni qiymatni oling.
\frac{392}{9}=\frac{104}{9}+2x^{2}
\frac{104}{9}+2x^{2} natijani olish uchun 104+18x^{2} ning har bir ifodasini 9 ga bo‘ling.
\frac{104}{9}+2x^{2}=\frac{392}{9}
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
\frac{104}{9}+2x^{2}-\frac{392}{9}=0
Ikkala tarafdan \frac{392}{9} ni ayirish.
-32+2x^{2}=0
-32 olish uchun \frac{104}{9} dan \frac{392}{9} ni ayirish.
-16+x^{2}=0
Ikki tarafini 2 ga bo‘ling.
\left(x-4\right)\left(x+4\right)=0
Hisoblang: -16+x^{2}. -16+x^{2} ni x^{2}-4^{2} sifatida qaytadan yozish. Kvadratlarning farqini ushbu formula bilan hisoblash mumkin: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=4 x=-4
Tenglamani yechish uchun x-4=0 va x+4=0 ni yeching.
\frac{100}{9}+\left(\frac{2\sqrt{73}}{3}\right)^{2}=2\times \left(\frac{\sqrt{52}}{3}\right)^{2}+2x^{2}
2 daraja ko‘rsatkichini \frac{10}{3} ga hisoblang va \frac{100}{9} ni qiymatni oling.
\frac{100}{9}+\frac{\left(2\sqrt{73}\right)^{2}}{3^{2}}=2\times \left(\frac{\sqrt{52}}{3}\right)^{2}+2x^{2}
\frac{2\sqrt{73}}{3}ni darajaga oshirish uchun, surat va maxrajni darajaga oshirib, keyin bo‘ling.
\frac{100}{9}+\frac{\left(2\sqrt{73}\right)^{2}}{9}=2\times \left(\frac{\sqrt{52}}{3}\right)^{2}+2x^{2}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 3^{2} ni kengaytirish.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=2\times \left(\frac{\sqrt{52}}{3}\right)^{2}+2x^{2}
\frac{100}{9} va \frac{\left(2\sqrt{73}\right)^{2}}{9} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=2\times \left(\frac{2\sqrt{13}}{3}\right)^{2}+2x^{2}
Faktor: 52=2^{2}\times 13. \sqrt{2^{2}\times 13} koʻpaytmasining kvadrat ildizini \sqrt{2^{2}}\sqrt{13} kvadrat ildizlarining koʻpaytmasi sifatida qayta yozing. 2^{2} ning kvadrat ildizini chiqarish.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=2\times \frac{\left(2\sqrt{13}\right)^{2}}{3^{2}}+2x^{2}
\frac{2\sqrt{13}}{3}ni darajaga oshirish uchun, surat va maxrajni darajaga oshirib, keyin bo‘ling.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}}{3^{2}}+2x^{2}
2\times \frac{\left(2\sqrt{13}\right)^{2}}{3^{2}} ni yagona kasrga aylantiring.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}}{3^{2}}+\frac{2x^{2}\times 3^{2}}{3^{2}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 2x^{2} ni \frac{3^{2}}{3^{2}} marotabaga ko'paytirish.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
\frac{2\times \left(2\sqrt{13}\right)^{2}}{3^{2}} va \frac{2x^{2}\times 3^{2}}{3^{2}} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{100+2^{2}\left(\sqrt{73}\right)^{2}}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
\left(2\sqrt{73}\right)^{2} ni kengaytirish.
\frac{100+4\left(\sqrt{73}\right)^{2}}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
\frac{100+4\times 73}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
\sqrt{73} kvadrati – 73.
\frac{100+292}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
292 hosil qilish uchun 4 va 73 ni ko'paytirish.
\frac{392}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
392 olish uchun 100 va 292'ni qo'shing.
\frac{392}{9}=\frac{2\times 2^{2}\left(\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
\left(2\sqrt{13}\right)^{2} ni kengaytirish.
\frac{392}{9}=\frac{2\times 4\left(\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
\frac{392}{9}=\frac{2\times 4\times 13+2x^{2}\times 3^{2}}{3^{2}}
\sqrt{13} kvadrati – 13.
\frac{392}{9}=\frac{2\times 52+2x^{2}\times 3^{2}}{3^{2}}
52 hosil qilish uchun 4 va 13 ni ko'paytirish.
\frac{392}{9}=\frac{104+2x^{2}\times 3^{2}}{3^{2}}
104 hosil qilish uchun 2 va 52 ni ko'paytirish.
\frac{392}{9}=\frac{104+2x^{2}\times 9}{3^{2}}
2 daraja ko‘rsatkichini 3 ga hisoblang va 9 ni qiymatni oling.
\frac{392}{9}=\frac{104+18x^{2}}{3^{2}}
18 hosil qilish uchun 2 va 9 ni ko'paytirish.
\frac{392}{9}=\frac{104+18x^{2}}{9}
2 daraja ko‘rsatkichini 3 ga hisoblang va 9 ni qiymatni oling.
\frac{392}{9}=\frac{104}{9}+2x^{2}
\frac{104}{9}+2x^{2} natijani olish uchun 104+18x^{2} ning har bir ifodasini 9 ga bo‘ling.
\frac{104}{9}+2x^{2}=\frac{392}{9}
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
2x^{2}=\frac{392}{9}-\frac{104}{9}
Ikkala tarafdan \frac{104}{9} ni ayirish.
2x^{2}=32
32 olish uchun \frac{392}{9} dan \frac{104}{9} ni ayirish.
x^{2}=\frac{32}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}=16
16 ni olish uchun 32 ni 2 ga bo‘ling.
x=4 x=-4
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
\frac{100}{9}+\left(\frac{2\sqrt{73}}{3}\right)^{2}=2\times \left(\frac{\sqrt{52}}{3}\right)^{2}+2x^{2}
2 daraja ko‘rsatkichini \frac{10}{3} ga hisoblang va \frac{100}{9} ni qiymatni oling.
\frac{100}{9}+\frac{\left(2\sqrt{73}\right)^{2}}{3^{2}}=2\times \left(\frac{\sqrt{52}}{3}\right)^{2}+2x^{2}
\frac{2\sqrt{73}}{3}ni darajaga oshirish uchun, surat va maxrajni darajaga oshirib, keyin bo‘ling.
\frac{100}{9}+\frac{\left(2\sqrt{73}\right)^{2}}{9}=2\times \left(\frac{\sqrt{52}}{3}\right)^{2}+2x^{2}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 3^{2} ni kengaytirish.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=2\times \left(\frac{\sqrt{52}}{3}\right)^{2}+2x^{2}
\frac{100}{9} va \frac{\left(2\sqrt{73}\right)^{2}}{9} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=2\times \left(\frac{2\sqrt{13}}{3}\right)^{2}+2x^{2}
Faktor: 52=2^{2}\times 13. \sqrt{2^{2}\times 13} koʻpaytmasining kvadrat ildizini \sqrt{2^{2}}\sqrt{13} kvadrat ildizlarining koʻpaytmasi sifatida qayta yozing. 2^{2} ning kvadrat ildizini chiqarish.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=2\times \frac{\left(2\sqrt{13}\right)^{2}}{3^{2}}+2x^{2}
\frac{2\sqrt{13}}{3}ni darajaga oshirish uchun, surat va maxrajni darajaga oshirib, keyin bo‘ling.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}}{3^{2}}+2x^{2}
2\times \frac{\left(2\sqrt{13}\right)^{2}}{3^{2}} ni yagona kasrga aylantiring.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}}{3^{2}}+\frac{2x^{2}\times 3^{2}}{3^{2}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 2x^{2} ni \frac{3^{2}}{3^{2}} marotabaga ko'paytirish.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
\frac{2\times \left(2\sqrt{13}\right)^{2}}{3^{2}} va \frac{2x^{2}\times 3^{2}}{3^{2}} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{100+2^{2}\left(\sqrt{73}\right)^{2}}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
\left(2\sqrt{73}\right)^{2} ni kengaytirish.
\frac{100+4\left(\sqrt{73}\right)^{2}}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
\frac{100+4\times 73}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
\sqrt{73} kvadrati – 73.
\frac{100+292}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
292 hosil qilish uchun 4 va 73 ni ko'paytirish.
\frac{392}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
392 olish uchun 100 va 292'ni qo'shing.
\frac{392}{9}=\frac{2\times 2^{2}\left(\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
\left(2\sqrt{13}\right)^{2} ni kengaytirish.
\frac{392}{9}=\frac{2\times 4\left(\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
\frac{392}{9}=\frac{2\times 4\times 13+2x^{2}\times 3^{2}}{3^{2}}
\sqrt{13} kvadrati – 13.
\frac{392}{9}=\frac{2\times 52+2x^{2}\times 3^{2}}{3^{2}}
52 hosil qilish uchun 4 va 13 ni ko'paytirish.
\frac{392}{9}=\frac{104+2x^{2}\times 3^{2}}{3^{2}}
104 hosil qilish uchun 2 va 52 ni ko'paytirish.
\frac{392}{9}=\frac{104+2x^{2}\times 9}{3^{2}}
2 daraja ko‘rsatkichini 3 ga hisoblang va 9 ni qiymatni oling.
\frac{392}{9}=\frac{104+18x^{2}}{3^{2}}
18 hosil qilish uchun 2 va 9 ni ko'paytirish.
\frac{392}{9}=\frac{104+18x^{2}}{9}
2 daraja ko‘rsatkichini 3 ga hisoblang va 9 ni qiymatni oling.
\frac{392}{9}=\frac{104}{9}+2x^{2}
\frac{104}{9}+2x^{2} natijani olish uchun 104+18x^{2} ning har bir ifodasini 9 ga bo‘ling.
\frac{104}{9}+2x^{2}=\frac{392}{9}
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
\frac{104}{9}+2x^{2}-\frac{392}{9}=0
Ikkala tarafdan \frac{392}{9} ni ayirish.
-32+2x^{2}=0
-32 olish uchun \frac{104}{9} dan \frac{392}{9} ni ayirish.
2x^{2}-32=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 2\left(-32\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 0 ni b va -32 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\times 2\left(-32\right)}}{2\times 2}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{-8\left(-32\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{0±\sqrt{256}}{2\times 2}
-8 ni -32 marotabaga ko'paytirish.
x=\frac{0±16}{2\times 2}
256 ning kvadrat ildizini chiqarish.
x=\frac{0±16}{4}
2 ni 2 marotabaga ko'paytirish.
x=4
x=\frac{0±16}{4} tenglamasini yeching, bunda ± musbat. 16 ni 4 ga bo'lish.
x=-4
x=\frac{0±16}{4} tenglamasini yeching, bunda ± manfiy. -16 ni 4 ga bo'lish.
x=4 x=-4
Tenglama yechildi.