Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(\frac{1}{4}\right)^{2}x^{2}+\left(\frac{80}{4}-\frac{1}{4}x\right)^{2}=200
\left(\frac{1}{4}x\right)^{2} ni kengaytirish.
\frac{1}{16}x^{2}+\left(\frac{80}{4}-\frac{1}{4}x\right)^{2}=200
2 daraja ko‘rsatkichini \frac{1}{4} ga hisoblang va \frac{1}{16} ni qiymatni oling.
\frac{1}{16}x^{2}+\left(20-\frac{1}{4}x\right)^{2}=200
20 ni olish uchun 80 ni 4 ga bo‘ling.
\frac{1}{16}x^{2}+400-10x+\frac{1}{16}x^{2}=200
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(20-\frac{1}{4}x\right)^{2} kengaytirilishi uchun ishlating.
\frac{1}{8}x^{2}+400-10x=200
\frac{1}{8}x^{2} ni olish uchun \frac{1}{16}x^{2} va \frac{1}{16}x^{2} ni birlashtirish.
\frac{1}{8}x^{2}+400-10x-200=0
Ikkala tarafdan 200 ni ayirish.
\frac{1}{8}x^{2}+200-10x=0
200 olish uchun 400 dan 200 ni ayirish.
\frac{1}{8}x^{2}-10x+200=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times \frac{1}{8}\times 200}}{2\times \frac{1}{8}}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} \frac{1}{8} ni a, -10 ni b va 200 ni c bilan almashtiring.
x=\frac{-\left(-10\right)±\sqrt{100-4\times \frac{1}{8}\times 200}}{2\times \frac{1}{8}}
-10 kvadratini chiqarish.
x=\frac{-\left(-10\right)±\sqrt{100-\frac{1}{2}\times 200}}{2\times \frac{1}{8}}
-4 ni \frac{1}{8} marotabaga ko'paytirish.
x=\frac{-\left(-10\right)±\sqrt{100-100}}{2\times \frac{1}{8}}
-\frac{1}{2} ni 200 marotabaga ko'paytirish.
x=\frac{-\left(-10\right)±\sqrt{0}}{2\times \frac{1}{8}}
100 ni -100 ga qo'shish.
x=-\frac{-10}{2\times \frac{1}{8}}
0 ning kvadrat ildizini chiqarish.
x=\frac{10}{2\times \frac{1}{8}}
-10 ning teskarisi 10 ga teng.
x=\frac{10}{\frac{1}{4}}
2 ni \frac{1}{8} marotabaga ko'paytirish.
x=40
10 ni \frac{1}{4} ga bo'lish 10 ga k'paytirish \frac{1}{4} ga qaytarish.
\left(\frac{1}{4}\right)^{2}x^{2}+\left(\frac{80}{4}-\frac{1}{4}x\right)^{2}=200
\left(\frac{1}{4}x\right)^{2} ni kengaytirish.
\frac{1}{16}x^{2}+\left(\frac{80}{4}-\frac{1}{4}x\right)^{2}=200
2 daraja ko‘rsatkichini \frac{1}{4} ga hisoblang va \frac{1}{16} ni qiymatni oling.
\frac{1}{16}x^{2}+\left(20-\frac{1}{4}x\right)^{2}=200
20 ni olish uchun 80 ni 4 ga bo‘ling.
\frac{1}{16}x^{2}+400-10x+\frac{1}{16}x^{2}=200
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(20-\frac{1}{4}x\right)^{2} kengaytirilishi uchun ishlating.
\frac{1}{8}x^{2}+400-10x=200
\frac{1}{8}x^{2} ni olish uchun \frac{1}{16}x^{2} va \frac{1}{16}x^{2} ni birlashtirish.
\frac{1}{8}x^{2}-10x=200-400
Ikkala tarafdan 400 ni ayirish.
\frac{1}{8}x^{2}-10x=-200
-200 olish uchun 200 dan 400 ni ayirish.
\frac{\frac{1}{8}x^{2}-10x}{\frac{1}{8}}=-\frac{200}{\frac{1}{8}}
Ikkala tarafini 8 ga ko‘paytiring.
x^{2}+\left(-\frac{10}{\frac{1}{8}}\right)x=-\frac{200}{\frac{1}{8}}
\frac{1}{8} ga bo'lish \frac{1}{8} ga ko'paytirishni bekor qiladi.
x^{2}-80x=-\frac{200}{\frac{1}{8}}
-10 ni \frac{1}{8} ga bo'lish -10 ga k'paytirish \frac{1}{8} ga qaytarish.
x^{2}-80x=-1600
-200 ni \frac{1}{8} ga bo'lish -200 ga k'paytirish \frac{1}{8} ga qaytarish.
x^{2}-80x+\left(-40\right)^{2}=-1600+\left(-40\right)^{2}
-80 ni bo‘lish, x shartining koeffitsienti, 2 ga -40 olish uchun. Keyin, -40 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-80x+1600=-1600+1600
-40 kvadratini chiqarish.
x^{2}-80x+1600=0
-1600 ni 1600 ga qo'shish.
\left(x-40\right)^{2}=0
x^{2}-80x+1600 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-40\right)^{2}}=\sqrt{0}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-40=0 x-40=0
Qisqartirish.
x=40 x=40
40 ni tenglamaning ikkala tarafiga qo'shish.
x=40
Tenglama yechildi. Yechimlar bir xil.