Baholash
\frac{6\sqrt{2}+11}{49}\approx 0,397658804
Baham ko'rish
Klipbordga nusxa olish
\left(\frac{3+\sqrt{2}}{\left(3-\sqrt{2}\right)\left(3+\sqrt{2}\right)}\right)^{2}
\frac{1}{3-\sqrt{2}} maxrajini 3+\sqrt{2} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\left(\frac{3+\sqrt{2}}{3^{2}-\left(\sqrt{2}\right)^{2}}\right)^{2}
Hisoblang: \left(3-\sqrt{2}\right)\left(3+\sqrt{2}\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{3+\sqrt{2}}{9-2}\right)^{2}
3 kvadratini chiqarish. \sqrt{2} kvadratini chiqarish.
\left(\frac{3+\sqrt{2}}{7}\right)^{2}
7 olish uchun 9 dan 2 ni ayirish.
\frac{\left(3+\sqrt{2}\right)^{2}}{7^{2}}
\frac{3+\sqrt{2}}{7}ni darajaga oshirish uchun, surat va maxrajni darajaga oshirib, keyin bo‘ling.
\frac{9+6\sqrt{2}+\left(\sqrt{2}\right)^{2}}{7^{2}}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(3+\sqrt{2}\right)^{2} kengaytirilishi uchun ishlating.
\frac{9+6\sqrt{2}+2}{7^{2}}
\sqrt{2} kvadrati – 2.
\frac{11+6\sqrt{2}}{7^{2}}
11 olish uchun 9 va 2'ni qo'shing.
\frac{11+6\sqrt{2}}{49}
2 daraja ko‘rsatkichini 7 ga hisoblang va 49 ni qiymatni oling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}