Asosiy tarkibga oʻtish
Baholash
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(\frac{3+\sqrt{2}}{\left(3-\sqrt{2}\right)\left(3+\sqrt{2}\right)}\right)^{2}
\frac{1}{3-\sqrt{2}} maxrajini 3+\sqrt{2} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\left(\frac{3+\sqrt{2}}{3^{2}-\left(\sqrt{2}\right)^{2}}\right)^{2}
Hisoblang: \left(3-\sqrt{2}\right)\left(3+\sqrt{2}\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{3+\sqrt{2}}{9-2}\right)^{2}
3 kvadratini chiqarish. \sqrt{2} kvadratini chiqarish.
\left(\frac{3+\sqrt{2}}{7}\right)^{2}
7 olish uchun 9 dan 2 ni ayirish.
\frac{\left(3+\sqrt{2}\right)^{2}}{7^{2}}
\frac{3+\sqrt{2}}{7}ni darajaga oshirish uchun, surat va maxrajni darajaga oshirib, keyin bo‘ling.
\frac{9+6\sqrt{2}+\left(\sqrt{2}\right)^{2}}{7^{2}}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(3+\sqrt{2}\right)^{2} kengaytirilishi uchun ishlating.
\frac{9+6\sqrt{2}+2}{7^{2}}
\sqrt{2} kvadrati – 2.
\frac{11+6\sqrt{2}}{7^{2}}
11 olish uchun 9 va 2'ni qo'shing.
\frac{11+6\sqrt{2}}{49}
2 daraja ko‘rsatkichini 7 ga hisoblang va 49 ni qiymatni oling.