Baholash
4\sqrt{3}+7\approx 13,92820323
Kengaytirish
4 \sqrt{3} + 7 = 13,92820323
Viktorina
Arithmetic
5xshash muammolar:
{ \left( \frac{ \sqrt{ 3 } +1 }{ \sqrt{ 3 } -1 } \right) }^{ 2 }
Baham ko'rish
Klipbordga nusxa olish
\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\right)^{2}
\frac{\sqrt{3}+1}{\sqrt{3}-1} maxrajini \sqrt{3}+1 orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}\right)^{2}
Hisoblang: \left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{3-1}\right)^{2}
\sqrt{3} kvadratini chiqarish. 1 kvadratini chiqarish.
\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{2}\right)^{2}
2 olish uchun 3 dan 1 ni ayirish.
\left(\frac{\left(\sqrt{3}+1\right)^{2}}{2}\right)^{2}
\left(\sqrt{3}+1\right)^{2} hosil qilish uchun \sqrt{3}+1 va \sqrt{3}+1 ni ko'paytirish.
\left(\frac{\left(\sqrt{3}\right)^{2}+2\sqrt{3}+1}{2}\right)^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(\sqrt{3}+1\right)^{2} kengaytirilishi uchun ishlating.
\left(\frac{3+2\sqrt{3}+1}{2}\right)^{2}
\sqrt{3} kvadrati – 3.
\left(\frac{4+2\sqrt{3}}{2}\right)^{2}
4 olish uchun 3 va 1'ni qo'shing.
\left(2+\sqrt{3}\right)^{2}
2+\sqrt{3} natijani olish uchun 4+2\sqrt{3} ning har bir ifodasini 2 ga bo‘ling.
4+4\sqrt{3}+\left(\sqrt{3}\right)^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(2+\sqrt{3}\right)^{2} kengaytirilishi uchun ishlating.
4+4\sqrt{3}+3
\sqrt{3} kvadrati – 3.
7+4\sqrt{3}
7 olish uchun 4 va 3'ni qo'shing.
\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\right)^{2}
\frac{\sqrt{3}+1}{\sqrt{3}-1} maxrajini \sqrt{3}+1 orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}\right)^{2}
Hisoblang: \left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{3-1}\right)^{2}
\sqrt{3} kvadratini chiqarish. 1 kvadratini chiqarish.
\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{2}\right)^{2}
2 olish uchun 3 dan 1 ni ayirish.
\left(\frac{\left(\sqrt{3}+1\right)^{2}}{2}\right)^{2}
\left(\sqrt{3}+1\right)^{2} hosil qilish uchun \sqrt{3}+1 va \sqrt{3}+1 ni ko'paytirish.
\left(\frac{\left(\sqrt{3}\right)^{2}+2\sqrt{3}+1}{2}\right)^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(\sqrt{3}+1\right)^{2} kengaytirilishi uchun ishlating.
\left(\frac{3+2\sqrt{3}+1}{2}\right)^{2}
\sqrt{3} kvadrati – 3.
\left(\frac{4+2\sqrt{3}}{2}\right)^{2}
4 olish uchun 3 va 1'ni qo'shing.
\left(2+\sqrt{3}\right)^{2}
2+\sqrt{3} natijani olish uchun 4+2\sqrt{3} ning har bir ifodasini 2 ga bo‘ling.
4+4\sqrt{3}+\left(\sqrt{3}\right)^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(2+\sqrt{3}\right)^{2} kengaytirilishi uchun ishlating.
4+4\sqrt{3}+3
\sqrt{3} kvadrati – 3.
7+4\sqrt{3}
7 olish uchun 4 va 3'ni qo'shing.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}