u uchun yechish
u=-1
u=-2
Baham ko'rish
Klipbordga nusxa olish
u^{2}+2u+1=2u^{2}+5u+3
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(u+1\right)^{2} kengaytirilishi uchun ishlating.
u^{2}+2u+1-2u^{2}=5u+3
Ikkala tarafdan 2u^{2} ni ayirish.
-u^{2}+2u+1=5u+3
-u^{2} ni olish uchun u^{2} va -2u^{2} ni birlashtirish.
-u^{2}+2u+1-5u=3
Ikkala tarafdan 5u ni ayirish.
-u^{2}-3u+1=3
-3u ni olish uchun 2u va -5u ni birlashtirish.
-u^{2}-3u+1-3=0
Ikkala tarafdan 3 ni ayirish.
-u^{2}-3u-2=0
-2 olish uchun 1 dan 3 ni ayirish.
a+b=-3 ab=-\left(-2\right)=2
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon -u^{2}+au+bu-2 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
a=-1 b=-2
ab musbat boʻlganda, a va b da bir xil belgi bor. a+b manfiy boʻlganda, a va b ikkisi ham manfiy. Faqat bundan juftlik tizim yechimidir.
\left(-u^{2}-u\right)+\left(-2u-2\right)
-u^{2}-3u-2 ni \left(-u^{2}-u\right)+\left(-2u-2\right) sifatida qaytadan yozish.
u\left(-u-1\right)+2\left(-u-1\right)
Birinchi guruhda u ni va ikkinchi guruhda 2 ni faktordan chiqaring.
\left(-u-1\right)\left(u+2\right)
Distributiv funktsiyasidan foydalangan holda -u-1 umumiy terminini chiqaring.
u=-1 u=-2
Tenglamani yechish uchun -u-1=0 va u+2=0 ni yeching.
u^{2}+2u+1=2u^{2}+5u+3
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(u+1\right)^{2} kengaytirilishi uchun ishlating.
u^{2}+2u+1-2u^{2}=5u+3
Ikkala tarafdan 2u^{2} ni ayirish.
-u^{2}+2u+1=5u+3
-u^{2} ni olish uchun u^{2} va -2u^{2} ni birlashtirish.
-u^{2}+2u+1-5u=3
Ikkala tarafdan 5u ni ayirish.
-u^{2}-3u+1=3
-3u ni olish uchun 2u va -5u ni birlashtirish.
-u^{2}-3u+1-3=0
Ikkala tarafdan 3 ni ayirish.
-u^{2}-3u-2=0
-2 olish uchun 1 dan 3 ni ayirish.
u=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-1\right)\left(-2\right)}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, -3 ni b va -2 ni c bilan almashtiring.
u=\frac{-\left(-3\right)±\sqrt{9-4\left(-1\right)\left(-2\right)}}{2\left(-1\right)}
-3 kvadratini chiqarish.
u=\frac{-\left(-3\right)±\sqrt{9+4\left(-2\right)}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
u=\frac{-\left(-3\right)±\sqrt{9-8}}{2\left(-1\right)}
4 ni -2 marotabaga ko'paytirish.
u=\frac{-\left(-3\right)±\sqrt{1}}{2\left(-1\right)}
9 ni -8 ga qo'shish.
u=\frac{-\left(-3\right)±1}{2\left(-1\right)}
1 ning kvadrat ildizini chiqarish.
u=\frac{3±1}{2\left(-1\right)}
-3 ning teskarisi 3 ga teng.
u=\frac{3±1}{-2}
2 ni -1 marotabaga ko'paytirish.
u=\frac{4}{-2}
u=\frac{3±1}{-2} tenglamasini yeching, bunda ± musbat. 3 ni 1 ga qo'shish.
u=-2
4 ni -2 ga bo'lish.
u=\frac{2}{-2}
u=\frac{3±1}{-2} tenglamasini yeching, bunda ± manfiy. 3 dan 1 ni ayirish.
u=-1
2 ni -2 ga bo'lish.
u=-2 u=-1
Tenglama yechildi.
u^{2}+2u+1=2u^{2}+5u+3
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(u+1\right)^{2} kengaytirilishi uchun ishlating.
u^{2}+2u+1-2u^{2}=5u+3
Ikkala tarafdan 2u^{2} ni ayirish.
-u^{2}+2u+1=5u+3
-u^{2} ni olish uchun u^{2} va -2u^{2} ni birlashtirish.
-u^{2}+2u+1-5u=3
Ikkala tarafdan 5u ni ayirish.
-u^{2}-3u+1=3
-3u ni olish uchun 2u va -5u ni birlashtirish.
-u^{2}-3u=3-1
Ikkala tarafdan 1 ni ayirish.
-u^{2}-3u=2
2 olish uchun 3 dan 1 ni ayirish.
\frac{-u^{2}-3u}{-1}=\frac{2}{-1}
Ikki tarafini -1 ga bo‘ling.
u^{2}+\left(-\frac{3}{-1}\right)u=\frac{2}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
u^{2}+3u=\frac{2}{-1}
-3 ni -1 ga bo'lish.
u^{2}+3u=-2
2 ni -1 ga bo'lish.
u^{2}+3u+\left(\frac{3}{2}\right)^{2}=-2+\left(\frac{3}{2}\right)^{2}
3 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{3}{2} olish uchun. Keyin, \frac{3}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
u^{2}+3u+\frac{9}{4}=-2+\frac{9}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{3}{2} kvadratini chiqarish.
u^{2}+3u+\frac{9}{4}=\frac{1}{4}
-2 ni \frac{9}{4} ga qo'shish.
\left(u+\frac{3}{2}\right)^{2}=\frac{1}{4}
u^{2}+3u+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(u+\frac{3}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
u+\frac{3}{2}=\frac{1}{2} u+\frac{3}{2}=-\frac{1}{2}
Qisqartirish.
u=-1 u=-2
Tenglamaning ikkala tarafidan \frac{3}{2} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}