E uchun yechish
\left\{\begin{matrix}E=\frac{\pi \left(\sigma _{1}-v\sigma _{3}-v\sigma _{2}\right)}{\epsilon }\text{, }&\sigma _{1}\neq v\left(\sigma _{2}+\sigma _{3}\right)\text{ and }\epsilon \neq 0\text{ and }\sigma _{1}\neq v\sigma _{2}+v\sigma _{3}\\E\neq 0\text{, }&\epsilon =0\text{ and }\sigma _{1}=v\left(\sigma _{2}+\sigma _{3}\right)\end{matrix}\right,
v uchun yechish
\left\{\begin{matrix}v=\frac{\pi \sigma _{1}-E\epsilon }{\pi \left(\sigma _{2}+\sigma _{3}\right)}\text{, }&E\neq 0\text{ and }\sigma _{2}\neq -\sigma _{3}\\v\in \mathrm{R}\text{, }&\sigma _{1}=\frac{E\epsilon }{\pi }\text{ and }\sigma _{2}=-\sigma _{3}\text{ and }E\neq 0\end{matrix}\right,
Baham ko'rish
Klipbordga nusxa olish
\epsilon E=\pi \left(\sigma _{1}-v\left(\sigma _{2}+\sigma _{3}\right)\right)
E qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini E ga ko'paytirish.
\epsilon E=\pi \left(\sigma _{1}-\left(v\sigma _{2}+v\sigma _{3}\right)\right)
v ga \sigma _{2}+\sigma _{3} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\epsilon E=\pi \left(\sigma _{1}-v\sigma _{2}-v\sigma _{3}\right)
v\sigma _{2}+v\sigma _{3} teskarisini topish uchun har birining teskarisini toping.
\epsilon E=\pi \sigma _{1}-\pi v\sigma _{2}-\pi v\sigma _{3}
\pi ga \sigma _{1}-v\sigma _{2}-v\sigma _{3} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\epsilon E=\pi \sigma _{1}-\pi v\sigma _{3}-\pi v\sigma _{2}
Tenglama standart shaklda.
\frac{\epsilon E}{\epsilon }=\frac{\pi \left(\sigma _{1}-v\sigma _{3}-v\sigma _{2}\right)}{\epsilon }
Ikki tarafini \epsilon ga bo‘ling.
E=\frac{\pi \left(\sigma _{1}-v\sigma _{3}-v\sigma _{2}\right)}{\epsilon }
\epsilon ga bo'lish \epsilon ga ko'paytirishni bekor qiladi.
E=\frac{\pi \left(\sigma _{1}-v\sigma _{3}-v\sigma _{2}\right)}{\epsilon }\text{, }E\neq 0
E qiymati 0 teng bo‘lmaydi.
\epsilon E=\pi \left(\sigma _{1}-v\left(\sigma _{2}+\sigma _{3}\right)\right)
Tenglamaning ikkala tarafini E ga ko'paytirish.
\epsilon E=\pi \left(\sigma _{1}-\left(v\sigma _{2}+v\sigma _{3}\right)\right)
v ga \sigma _{2}+\sigma _{3} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\epsilon E=\pi \left(\sigma _{1}-v\sigma _{2}-v\sigma _{3}\right)
v\sigma _{2}+v\sigma _{3} teskarisini topish uchun har birining teskarisini toping.
\epsilon E=\pi \sigma _{1}-\pi v\sigma _{2}-\pi v\sigma _{3}
\pi ga \sigma _{1}-v\sigma _{2}-v\sigma _{3} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\pi \sigma _{1}-\pi v\sigma _{2}-\pi v\sigma _{3}=\epsilon E
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
-\pi v\sigma _{2}-\pi v\sigma _{3}=\epsilon E-\pi \sigma _{1}
Ikkala tarafdan \pi \sigma _{1} ni ayirish.
-\pi v\sigma _{2}-\pi v\sigma _{3}=E\epsilon -\pi \sigma _{1}
Shartlarni qayta saralash.
\left(-\pi \sigma _{2}-\pi \sigma _{3}\right)v=E\epsilon -\pi \sigma _{1}
v'ga ega bo'lgan barcha shartlarni birlashtirish.
\frac{\left(-\pi \sigma _{2}-\pi \sigma _{3}\right)v}{-\pi \sigma _{2}-\pi \sigma _{3}}=\frac{E\epsilon -\pi \sigma _{1}}{-\pi \sigma _{2}-\pi \sigma _{3}}
Ikki tarafini -\pi \sigma _{2}-\pi \sigma _{3} ga bo‘ling.
v=\frac{E\epsilon -\pi \sigma _{1}}{-\pi \sigma _{2}-\pi \sigma _{3}}
-\pi \sigma _{2}-\pi \sigma _{3} ga bo'lish -\pi \sigma _{2}-\pi \sigma _{3} ga ko'paytirishni bekor qiladi.
v=\frac{E\epsilon -\pi \sigma _{1}}{-\pi \left(\sigma _{2}+\sigma _{3}\right)}
\epsilon E-\pi \sigma _{1} ni -\pi \sigma _{2}-\pi \sigma _{3} ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}