k ga nisbatan hosilani topish
\frac{1}{\left(\cos(k)\right)^{2}}
Baholash
\tan(k)
Baham ko'rish
Klipbordga nusxa olish
\frac{\mathrm{d}}{\mathrm{d}k}(\frac{\sin(k)}{\cos(k)})
Tangens ifodasidan foydalanish.
\frac{\cos(k)\frac{\mathrm{d}}{\mathrm{d}k}(\sin(k))-\sin(k)\frac{\mathrm{d}}{\mathrm{d}k}(\cos(k))}{\left(\cos(k)\right)^{2}}
Har qanday ikki differensial funksiya uchun ikki funksiyaning koeffitsient hosilasi raqamlagichning hosila marotabasi maxraj minusi va barchasi kvadrat maxrajiga bo'lingan.
\frac{\cos(k)\cos(k)-\sin(k)\left(-\sin(k)\right)}{\left(\cos(k)\right)^{2}}
sin(k) derivativi cos(k) dir va cos(k) derivativi −sin(k) dir.
\frac{\left(\cos(k)\right)^{2}+\left(\sin(k)\right)^{2}}{\left(\cos(k)\right)^{2}}
Qisqartirish.
\frac{1}{\left(\cos(k)\right)^{2}}
Pifagor ayniyatidan foydalanish.
\left(\sec(k)\right)^{2}
Sekant ifodasidan foydalanish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}