m uchun yechish (complex solution)
m\neq 0
\exists n_{2}\in \mathrm{Z}\text{ : }ϕ=\pi n_{2}+\arctan(\frac{1}{5})\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }ϕ=\frac{\pi \left(2n_{1}+1\right)}{2}
m uchun yechish
m\neq 0
\exists n_{1}\in \mathrm{Z}\text{ : }ϕ=\pi n_{1}+\arcsin(\frac{\sqrt{26}}{26})
ϕ uchun yechish (complex solution)
ϕ=\pi n_{1}+\arctan(\frac{1}{5})
n_{1}\in \mathrm{Z}
ϕ uchun yechish
ϕ=\pi n_{1}+\arcsin(\frac{\sqrt{26}}{26})
n_{1}\in \mathrm{Z}
Baham ko'rish
Klipbordga nusxa olish
50m\tan(ϕ)=10m
m qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 50m ga ko'paytirish.
50m\tan(ϕ)-10m=0
Ikkala tarafdan 10m ni ayirish.
\left(50\tan(ϕ)-10\right)m=0
m'ga ega bo'lgan barcha shartlarni birlashtirish.
m=0
0 ni 50\tan(ϕ)-10 ga bo'lish.
m\in \emptyset
m qiymati 0 teng bo‘lmaydi.
50m\tan(ϕ)=10m
m qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 50m ga ko'paytirish.
50m\tan(ϕ)-10m=0
Ikkala tarafdan 10m ni ayirish.
\left(50\tan(ϕ)-10\right)m=0
m'ga ega bo'lgan barcha shartlarni birlashtirish.
m=0
0 ni 50\tan(ϕ)-10 ga bo'lish.
m\in \emptyset
m qiymati 0 teng bo‘lmaydi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}