Asosiy tarkibga oʻtish
θ_2 ga nisbatan hosilani topish
Tick mark Image
Baholash
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{\mathrm{d}}{\mathrm{d}\theta _{2}}(\frac{\sin(\theta _{2})}{\cos(\theta _{2})})
Tangens ifodasidan foydalanish.
\frac{\cos(\theta _{2})\frac{\mathrm{d}}{\mathrm{d}\theta _{2}}(\sin(\theta _{2}))-\sin(\theta _{2})\frac{\mathrm{d}}{\mathrm{d}\theta _{2}}(\cos(\theta _{2}))}{\left(\cos(\theta _{2})\right)^{2}}
Har qanday ikki differensial funksiya uchun ikki funksiyaning koeffitsient hosilasi raqamlagichning hosila marotabasi maxraj minusi va barchasi kvadrat maxrajiga bo'lingan.
\frac{\cos(\theta _{2})\cos(\theta _{2})-\sin(\theta _{2})\left(-\sin(\theta _{2})\right)}{\left(\cos(\theta _{2})\right)^{2}}
sin(\theta _{2}) derivativi cos(\theta _{2}) dir va cos(\theta _{2}) derivativi −sin(\theta _{2}) dir.
\frac{\left(\cos(\theta _{2})\right)^{2}+\left(\sin(\theta _{2})\right)^{2}}{\left(\cos(\theta _{2})\right)^{2}}
Qisqartirish.
\frac{1}{\left(\cos(\theta _{2})\right)^{2}}
Pifagor ayniyatidan foydalanish.
\left(\sec(\theta _{2})\right)^{2}
Sekant ifodasidan foydalanish.