y uchun yechish
y=0
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(\sqrt{y+3}\right)^{2}=\left(\sqrt{y}+\sqrt{3}\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
y+3=\left(\sqrt{y}+\sqrt{3}\right)^{2}
2 daraja ko‘rsatkichini \sqrt{y+3} ga hisoblang va y+3 ni qiymatni oling.
y+3=\left(\sqrt{y}\right)^{2}+2\sqrt{y}\sqrt{3}+\left(\sqrt{3}\right)^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(\sqrt{y}+\sqrt{3}\right)^{2} kengaytirilishi uchun ishlating.
y+3=y+2\sqrt{y}\sqrt{3}+\left(\sqrt{3}\right)^{2}
2 daraja ko‘rsatkichini \sqrt{y} ga hisoblang va y ni qiymatni oling.
y+3=y+2\sqrt{y}\sqrt{3}+3
\sqrt{3} kvadrati – 3.
y+3-y=2\sqrt{y}\sqrt{3}+3
Ikkala tarafdan y ni ayirish.
3=2\sqrt{y}\sqrt{3}+3
0 ni olish uchun y va -y ni birlashtirish.
2\sqrt{y}\sqrt{3}+3=3
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
2\sqrt{y}\sqrt{3}=3-3
Ikkala tarafdan 3 ni ayirish.
2\sqrt{y}\sqrt{3}=0
0 olish uchun 3 dan 3 ni ayirish.
\frac{2\sqrt{3}\sqrt{y}}{2\sqrt{3}}=\frac{0}{2\sqrt{3}}
Ikki tarafini 2\sqrt{3} ga bo‘ling.
\sqrt{y}=\frac{0}{2\sqrt{3}}
2\sqrt{3} ga bo'lish 2\sqrt{3} ga ko'paytirishni bekor qiladi.
\sqrt{y}=0
0 ni 2\sqrt{3} ga bo'lish.
y=0
Tenglamaning ikkala taraf kvadratini chiqarish.
\sqrt{0+3}=\sqrt{0}+\sqrt{3}
\sqrt{y+3}=\sqrt{y}+\sqrt{3} tenglamasida y uchun 0 ni almashtiring.
3^{\frac{1}{2}}=3^{\frac{1}{2}}
Qisqartirish. y=0 tenglamani qoniqtiradi.
y=0
\sqrt{y+3}=\sqrt{y}+\sqrt{3} tenglamasi noyob yechimga ega.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}