y uchun yechish
y = \frac{49}{36} = 1\frac{13}{36} \approx 1,361111111
Grafik
Viktorina
Algebra
\sqrt{ y } + \sqrt{ y+2 } =3
Baham ko'rish
Klipbordga nusxa olish
\sqrt{y}=3-\sqrt{y+2}
Tenglamaning ikkala tarafidan \sqrt{y+2} ni ayirish.
\left(\sqrt{y}\right)^{2}=\left(3-\sqrt{y+2}\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
y=\left(3-\sqrt{y+2}\right)^{2}
2 daraja ko‘rsatkichini \sqrt{y} ga hisoblang va y ni qiymatni oling.
y=9-6\sqrt{y+2}+\left(\sqrt{y+2}\right)^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(3-\sqrt{y+2}\right)^{2} kengaytirilishi uchun ishlating.
y=9-6\sqrt{y+2}+y+2
2 daraja ko‘rsatkichini \sqrt{y+2} ga hisoblang va y+2 ni qiymatni oling.
y=11-6\sqrt{y+2}+y
11 olish uchun 9 va 2'ni qo'shing.
y+6\sqrt{y+2}=11+y
6\sqrt{y+2} ni ikki tarafga qo’shing.
y+6\sqrt{y+2}-y=11
Ikkala tarafdan y ni ayirish.
6\sqrt{y+2}=11
0 ni olish uchun y va -y ni birlashtirish.
\sqrt{y+2}=\frac{11}{6}
Ikki tarafini 6 ga bo‘ling.
y+2=\frac{121}{36}
Tenglamaning ikkala taraf kvadratini chiqarish.
y+2-2=\frac{121}{36}-2
Tenglamaning ikkala tarafidan 2 ni ayirish.
y=\frac{121}{36}-2
O‘zidan 2 ayirilsa 0 qoladi.
y=\frac{49}{36}
\frac{121}{36} dan 2 ni ayirish.
\sqrt{\frac{49}{36}}+\sqrt{\frac{49}{36}+2}=3
\sqrt{y}+\sqrt{y+2}=3 tenglamasida y uchun \frac{49}{36} ni almashtiring.
3=3
Qisqartirish. y=\frac{49}{36} tenglamani qoniqtiradi.
y=\frac{49}{36}
\sqrt{y}=-\sqrt{y+2}+3 tenglamasi noyob yechimga ega.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}