x uchun yechish
x=2
Grafik
Baham ko'rish
Klipbordga nusxa olish
\sqrt{x+2}=2+\sqrt{x-2}
Tenglamaning ikkala tarafidan -\sqrt{x-2} ni ayirish.
\left(\sqrt{x+2}\right)^{2}=\left(2+\sqrt{x-2}\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
x+2=\left(2+\sqrt{x-2}\right)^{2}
2 daraja ko‘rsatkichini \sqrt{x+2} ga hisoblang va x+2 ni qiymatni oling.
x+2=4+4\sqrt{x-2}+\left(\sqrt{x-2}\right)^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(2+\sqrt{x-2}\right)^{2} kengaytirilishi uchun ishlating.
x+2=4+4\sqrt{x-2}+x-2
2 daraja ko‘rsatkichini \sqrt{x-2} ga hisoblang va x-2 ni qiymatni oling.
x+2=2+4\sqrt{x-2}+x
2 olish uchun 4 dan 2 ni ayirish.
x+2-4\sqrt{x-2}=2+x
Ikkala tarafdan 4\sqrt{x-2} ni ayirish.
x+2-4\sqrt{x-2}-x=2
Ikkala tarafdan x ni ayirish.
2-4\sqrt{x-2}=2
0 ni olish uchun x va -x ni birlashtirish.
-4\sqrt{x-2}=2-2
Ikkala tarafdan 2 ni ayirish.
-4\sqrt{x-2}=0
0 olish uchun 2 dan 2 ni ayirish.
\sqrt{x-2}=0
Ikki tarafini -4 ga bo‘ling. Nol bo‘lmagan har qanday sonni nolga ko‘paytirsangiz, nol bo‘ladi.
x-2=0
Tenglamaning ikkala taraf kvadratini chiqarish.
x-2-\left(-2\right)=-\left(-2\right)
2 ni tenglamaning ikkala tarafiga qo'shish.
x=-\left(-2\right)
O‘zidan -2 ayirilsa 0 qoladi.
x=2
0 dan -2 ni ayirish.
\sqrt{2+2}-\sqrt{2-2}=2
\sqrt{x+2}-\sqrt{x-2}=2 tenglamasida x uchun 2 ni almashtiring.
2=2
Qisqartirish. x=2 tenglamani qoniqtiradi.
x=2
\sqrt{x+2}=\sqrt{x-2}+2 tenglamasi noyob yechimga ega.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}