x uchun yechish
x=9
Grafik
Baham ko'rish
Klipbordga nusxa olish
\sqrt{x+16}=2+\sqrt{x}
Tenglamaning ikkala tarafidan -\sqrt{x} ni ayirish.
\left(\sqrt{x+16}\right)^{2}=\left(2+\sqrt{x}\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
x+16=\left(2+\sqrt{x}\right)^{2}
2 daraja ko‘rsatkichini \sqrt{x+16} ga hisoblang va x+16 ni qiymatni oling.
x+16=4+4\sqrt{x}+\left(\sqrt{x}\right)^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(2+\sqrt{x}\right)^{2} kengaytirilishi uchun ishlating.
x+16=4+4\sqrt{x}+x
2 daraja ko‘rsatkichini \sqrt{x} ga hisoblang va x ni qiymatni oling.
x+16-4\sqrt{x}=4+x
Ikkala tarafdan 4\sqrt{x} ni ayirish.
x+16-4\sqrt{x}-x=4
Ikkala tarafdan x ni ayirish.
16-4\sqrt{x}=4
0 ni olish uchun x va -x ni birlashtirish.
-4\sqrt{x}=4-16
Ikkala tarafdan 16 ni ayirish.
-4\sqrt{x}=-12
-12 olish uchun 4 dan 16 ni ayirish.
\sqrt{x}=\frac{-12}{-4}
Ikki tarafini -4 ga bo‘ling.
\sqrt{x}=3
3 ni olish uchun -12 ni -4 ga bo‘ling.
x=9
Tenglamaning ikkala taraf kvadratini chiqarish.
\sqrt{9+16}-\sqrt{9}=2
\sqrt{x+16}-\sqrt{x}=2 tenglamasida x uchun 9 ni almashtiring.
2=2
Qisqartirish. x=9 tenglamani qoniqtiradi.
x=9
\sqrt{x+16}=\sqrt{x}+2 tenglamasi noyob yechimga ega.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}