x uchun yechish (complex solution)
x=\frac{-1+\sqrt{3}i}{2}\approx -0,5+0,866025404i
Grafik
Baham ko'rish
Klipbordga nusxa olish
\sqrt{x}=1+x
Tenglamaning ikkala tarafidan -x ni ayirish.
\left(\sqrt{x}\right)^{2}=\left(1+x\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
x=\left(1+x\right)^{2}
2 daraja ko‘rsatkichini \sqrt{x} ga hisoblang va x ni qiymatni oling.
x=1+2x+x^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(1+x\right)^{2} kengaytirilishi uchun ishlating.
x-1=2x+x^{2}
Ikkala tarafdan 1 ni ayirish.
x-1-2x=x^{2}
Ikkala tarafdan 2x ni ayirish.
-x-1=x^{2}
-x ni olish uchun x va -2x ni birlashtirish.
-x-1-x^{2}=0
Ikkala tarafdan x^{2} ni ayirish.
-x^{2}-x-1=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, -1 ni b va -1 ni c bilan almashtiring.
x=\frac{-\left(-1\right)±\sqrt{1+4\left(-1\right)}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-\left(-1\right)±\sqrt{1-4}}{2\left(-1\right)}
4 ni -1 marotabaga ko'paytirish.
x=\frac{-\left(-1\right)±\sqrt{-3}}{2\left(-1\right)}
1 ni -4 ga qo'shish.
x=\frac{-\left(-1\right)±\sqrt{3}i}{2\left(-1\right)}
-3 ning kvadrat ildizini chiqarish.
x=\frac{1±\sqrt{3}i}{2\left(-1\right)}
-1 ning teskarisi 1 ga teng.
x=\frac{1±\sqrt{3}i}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{1+\sqrt{3}i}{-2}
x=\frac{1±\sqrt{3}i}{-2} tenglamasini yeching, bunda ± musbat. 1 ni i\sqrt{3} ga qo'shish.
x=\frac{-\sqrt{3}i-1}{2}
1+i\sqrt{3} ni -2 ga bo'lish.
x=\frac{-\sqrt{3}i+1}{-2}
x=\frac{1±\sqrt{3}i}{-2} tenglamasini yeching, bunda ± manfiy. 1 dan i\sqrt{3} ni ayirish.
x=\frac{-1+\sqrt{3}i}{2}
1-i\sqrt{3} ni -2 ga bo'lish.
x=\frac{-\sqrt{3}i-1}{2} x=\frac{-1+\sqrt{3}i}{2}
Tenglama yechildi.
\sqrt{\frac{-\sqrt{3}i-1}{2}}-\frac{-\sqrt{3}i-1}{2}=1
\sqrt{x}-x=1 tenglamasida x uchun \frac{-\sqrt{3}i-1}{2} ni almashtiring.
i\times 3^{\frac{1}{2}}=1
Qisqartirish. x=\frac{-\sqrt{3}i-1}{2} qiymati bu tenglamani qoniqtirmaydi.
\sqrt{\frac{-1+\sqrt{3}i}{2}}-\frac{-1+\sqrt{3}i}{2}=1
\sqrt{x}-x=1 tenglamasida x uchun \frac{-1+\sqrt{3}i}{2} ni almashtiring.
1=1
Qisqartirish. x=\frac{-1+\sqrt{3}i}{2} tenglamani qoniqtiradi.
x=\frac{-1+\sqrt{3}i}{2}
\sqrt{x}=x+1 tenglamasi noyob yechimga ega.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}