x uchun yechish
x = \frac{\sqrt{5} + 3}{2} \approx 2,618033989
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(\sqrt{x}\right)^{2}=\left(x-1\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
x=\left(x-1\right)^{2}
2 daraja ko‘rsatkichini \sqrt{x} ga hisoblang va x ni qiymatni oling.
x=x^{2}-2x+1
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-1\right)^{2} kengaytirilishi uchun ishlating.
x-x^{2}=-2x+1
Ikkala tarafdan x^{2} ni ayirish.
x-x^{2}+2x=1
2x ni ikki tarafga qo’shing.
3x-x^{2}=1
3x ni olish uchun x va 2x ni birlashtirish.
3x-x^{2}-1=0
Ikkala tarafdan 1 ni ayirish.
-x^{2}+3x-1=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-3±\sqrt{3^{2}-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, 3 ni b va -1 ni c bilan almashtiring.
x=\frac{-3±\sqrt{9-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
3 kvadratini chiqarish.
x=\frac{-3±\sqrt{9+4\left(-1\right)}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-3±\sqrt{9-4}}{2\left(-1\right)}
4 ni -1 marotabaga ko'paytirish.
x=\frac{-3±\sqrt{5}}{2\left(-1\right)}
9 ni -4 ga qo'shish.
x=\frac{-3±\sqrt{5}}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{\sqrt{5}-3}{-2}
x=\frac{-3±\sqrt{5}}{-2} tenglamasini yeching, bunda ± musbat. -3 ni \sqrt{5} ga qo'shish.
x=\frac{3-\sqrt{5}}{2}
-3+\sqrt{5} ni -2 ga bo'lish.
x=\frac{-\sqrt{5}-3}{-2}
x=\frac{-3±\sqrt{5}}{-2} tenglamasini yeching, bunda ± manfiy. -3 dan \sqrt{5} ni ayirish.
x=\frac{\sqrt{5}+3}{2}
-3-\sqrt{5} ni -2 ga bo'lish.
x=\frac{3-\sqrt{5}}{2} x=\frac{\sqrt{5}+3}{2}
Tenglama yechildi.
\sqrt{\frac{3-\sqrt{5}}{2}}=\frac{3-\sqrt{5}}{2}-1
\sqrt{x}=x-1 tenglamasida x uchun \frac{3-\sqrt{5}}{2} ni almashtiring.
-\left(\frac{1}{2}-\frac{1}{2}\times 5^{\frac{1}{2}}\right)=\frac{1}{2}-\frac{1}{2}\times 5^{\frac{1}{2}}
Qisqartirish. x=\frac{3-\sqrt{5}}{2} qiymati bu tenglamani qoniqtirmaydi, chunki oʻng va chap tarafdagi belgilar bir-biriga qarama-qarshi.
\sqrt{\frac{\sqrt{5}+3}{2}}=\frac{\sqrt{5}+3}{2}-1
\sqrt{x}=x-1 tenglamasida x uchun \frac{\sqrt{5}+3}{2} ni almashtiring.
\frac{1}{2}+\frac{1}{2}\times 5^{\frac{1}{2}}=\frac{1}{2}\times 5^{\frac{1}{2}}+\frac{1}{2}
Qisqartirish. x=\frac{\sqrt{5}+3}{2} tenglamani qoniqtiradi.
x=\frac{\sqrt{5}+3}{2}
\sqrt{x}=x-1 tenglamasi noyob yechimga ega.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}