x uchun yechish (complex solution)
x=\frac{-29+\sqrt{59}i}{50}\approx -0,58+0,153622915i
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(\sqrt{x}\right)^{2}=\left(5x+3\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
x=\left(5x+3\right)^{2}
2 daraja ko‘rsatkichini \sqrt{x} ga hisoblang va x ni qiymatni oling.
x=25x^{2}+30x+9
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(5x+3\right)^{2} kengaytirilishi uchun ishlating.
x-25x^{2}=30x+9
Ikkala tarafdan 25x^{2} ni ayirish.
x-25x^{2}-30x=9
Ikkala tarafdan 30x ni ayirish.
-29x-25x^{2}=9
-29x ni olish uchun x va -30x ni birlashtirish.
-29x-25x^{2}-9=0
Ikkala tarafdan 9 ni ayirish.
-25x^{2}-29x-9=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-29\right)±\sqrt{\left(-29\right)^{2}-4\left(-25\right)\left(-9\right)}}{2\left(-25\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -25 ni a, -29 ni b va -9 ni c bilan almashtiring.
x=\frac{-\left(-29\right)±\sqrt{841-4\left(-25\right)\left(-9\right)}}{2\left(-25\right)}
-29 kvadratini chiqarish.
x=\frac{-\left(-29\right)±\sqrt{841+100\left(-9\right)}}{2\left(-25\right)}
-4 ni -25 marotabaga ko'paytirish.
x=\frac{-\left(-29\right)±\sqrt{841-900}}{2\left(-25\right)}
100 ni -9 marotabaga ko'paytirish.
x=\frac{-\left(-29\right)±\sqrt{-59}}{2\left(-25\right)}
841 ni -900 ga qo'shish.
x=\frac{-\left(-29\right)±\sqrt{59}i}{2\left(-25\right)}
-59 ning kvadrat ildizini chiqarish.
x=\frac{29±\sqrt{59}i}{2\left(-25\right)}
-29 ning teskarisi 29 ga teng.
x=\frac{29±\sqrt{59}i}{-50}
2 ni -25 marotabaga ko'paytirish.
x=\frac{29+\sqrt{59}i}{-50}
x=\frac{29±\sqrt{59}i}{-50} tenglamasini yeching, bunda ± musbat. 29 ni i\sqrt{59} ga qo'shish.
x=\frac{-\sqrt{59}i-29}{50}
29+i\sqrt{59} ni -50 ga bo'lish.
x=\frac{-\sqrt{59}i+29}{-50}
x=\frac{29±\sqrt{59}i}{-50} tenglamasini yeching, bunda ± manfiy. 29 dan i\sqrt{59} ni ayirish.
x=\frac{-29+\sqrt{59}i}{50}
29-i\sqrt{59} ni -50 ga bo'lish.
x=\frac{-\sqrt{59}i-29}{50} x=\frac{-29+\sqrt{59}i}{50}
Tenglama yechildi.
\sqrt{\frac{-\sqrt{59}i-29}{50}}=5\times \frac{-\sqrt{59}i-29}{50}+3
\sqrt{x}=5x+3 tenglamasida x uchun \frac{-\sqrt{59}i-29}{50} ni almashtiring.
-\left(\frac{1}{10}-\frac{1}{10}i\times 59^{\frac{1}{2}}\right)=-\frac{1}{10}i\times 59^{\frac{1}{2}}+\frac{1}{10}
Qisqartirish. x=\frac{-\sqrt{59}i-29}{50} qiymati bu tenglamani qoniqtirmaydi.
\sqrt{\frac{-29+\sqrt{59}i}{50}}=5\times \frac{-29+\sqrt{59}i}{50}+3
\sqrt{x}=5x+3 tenglamasida x uchun \frac{-29+\sqrt{59}i}{50} ni almashtiring.
\frac{1}{10}+\frac{1}{10}i\times 59^{\frac{1}{2}}=\frac{1}{10}+\frac{1}{10}i\times 59^{\frac{1}{2}}
Qisqartirish. x=\frac{-29+\sqrt{59}i}{50} tenglamani qoniqtiradi.
x=\frac{-29+\sqrt{59}i}{50}
\sqrt{x}=5x+3 tenglamasi noyob yechimga ega.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}