Asosiy tarkibga oʻtish
n uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(\sqrt{4n+3}\right)^{2}=n^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
4n+3=n^{2}
2 daraja ko‘rsatkichini \sqrt{4n+3} ga hisoblang va 4n+3 ni qiymatni oling.
4n+3-n^{2}=0
Ikkala tarafdan n^{2} ni ayirish.
-n^{2}+4n+3=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
n=\frac{-4±\sqrt{4^{2}-4\left(-1\right)\times 3}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, 4 ni b va 3 ni c bilan almashtiring.
n=\frac{-4±\sqrt{16-4\left(-1\right)\times 3}}{2\left(-1\right)}
4 kvadratini chiqarish.
n=\frac{-4±\sqrt{16+4\times 3}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
n=\frac{-4±\sqrt{16+12}}{2\left(-1\right)}
4 ni 3 marotabaga ko'paytirish.
n=\frac{-4±\sqrt{28}}{2\left(-1\right)}
16 ni 12 ga qo'shish.
n=\frac{-4±2\sqrt{7}}{2\left(-1\right)}
28 ning kvadrat ildizini chiqarish.
n=\frac{-4±2\sqrt{7}}{-2}
2 ni -1 marotabaga ko'paytirish.
n=\frac{2\sqrt{7}-4}{-2}
n=\frac{-4±2\sqrt{7}}{-2} tenglamasini yeching, bunda ± musbat. -4 ni 2\sqrt{7} ga qo'shish.
n=2-\sqrt{7}
-4+2\sqrt{7} ni -2 ga bo'lish.
n=\frac{-2\sqrt{7}-4}{-2}
n=\frac{-4±2\sqrt{7}}{-2} tenglamasini yeching, bunda ± manfiy. -4 dan 2\sqrt{7} ni ayirish.
n=\sqrt{7}+2
-4-2\sqrt{7} ni -2 ga bo'lish.
n=2-\sqrt{7} n=\sqrt{7}+2
Tenglama yechildi.
\sqrt{4\left(2-\sqrt{7}\right)+3}=2-\sqrt{7}
\sqrt{4n+3}=n tenglamasida n uchun 2-\sqrt{7} ni almashtiring.
7^{\frac{1}{2}}-2=2-7^{\frac{1}{2}}
Qisqartirish. n=2-\sqrt{7} qiymati bu tenglamani qoniqtirmaydi, chunki oʻng va chap tarafdagi belgilar bir-biriga qarama-qarshi.
\sqrt{4\left(\sqrt{7}+2\right)+3}=\sqrt{7}+2
\sqrt{4n+3}=n tenglamasida n uchun \sqrt{7}+2 ni almashtiring.
2+7^{\frac{1}{2}}=2+7^{\frac{1}{2}}
Qisqartirish. n=\sqrt{7}+2 tenglamani qoniqtiradi.
n=\sqrt{7}+2
\sqrt{4n+3}=n tenglamasi noyob yechimga ega.