Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\sqrt{4578}x^{2}-\sqrt{4677521}x+31478-10523=0
Ikkala tarafdan 10523 ni ayirish.
\sqrt{4578}x^{2}-\sqrt{4677521}x+20955=0
20955 olish uchun 31478 dan 10523 ni ayirish.
\sqrt{4578}x^{2}+\left(-\sqrt{4677521}\right)x+20955=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-\sqrt{4677521}\right)±\sqrt{\left(-\sqrt{4677521}\right)^{2}-4\sqrt{4578}\times 20955}}{2\sqrt{4578}}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} \sqrt{4578} ni a, -\sqrt{4677521} ni b va 20955 ni c bilan almashtiring.
x=\frac{-\left(-\sqrt{4677521}\right)±\sqrt{4677521-4\sqrt{4578}\times 20955}}{2\sqrt{4578}}
-\sqrt{4677521} kvadratini chiqarish.
x=\frac{-\left(-\sqrt{4677521}\right)±\sqrt{4677521+\left(-4\sqrt{4578}\right)\times 20955}}{2\sqrt{4578}}
-4 ni \sqrt{4578} marotabaga ko'paytirish.
x=\frac{-\left(-\sqrt{4677521}\right)±\sqrt{4677521-83820\sqrt{4578}}}{2\sqrt{4578}}
-4\sqrt{4578} ni 20955 marotabaga ko'paytirish.
x=\frac{-\left(-\sqrt{4677521}\right)±i\sqrt{-\left(4677521-83820\sqrt{4578}\right)}}{2\sqrt{4578}}
4677521-83820\sqrt{4578} ning kvadrat ildizini chiqarish.
x=\frac{\sqrt{4677521}±i\sqrt{-\left(4677521-83820\sqrt{4578}\right)}}{2\sqrt{4578}}
-\sqrt{4677521} ning teskarisi \sqrt{4677521} ga teng.
x=\frac{\sqrt{4677521}+i\sqrt{83820\sqrt{4578}-4677521}}{2\sqrt{4578}}
x=\frac{\sqrt{4677521}±i\sqrt{-\left(4677521-83820\sqrt{4578}\right)}}{2\sqrt{4578}} tenglamasini yeching, bunda ± musbat. \sqrt{4677521} ni i\sqrt{-\left(4677521-83820\sqrt{4578}\right)} ga qo'shish.
x=\frac{\sqrt{4578}\left(\sqrt{4677521}+i\sqrt{83820\sqrt{4578}-4677521}\right)}{9156}
\sqrt{4677521}+i\sqrt{-4677521+83820\sqrt{4578}} ni 2\sqrt{4578} ga bo'lish.
x=\frac{-i\sqrt{83820\sqrt{4578}-4677521}+\sqrt{4677521}}{2\sqrt{4578}}
x=\frac{\sqrt{4677521}±i\sqrt{-\left(4677521-83820\sqrt{4578}\right)}}{2\sqrt{4578}} tenglamasini yeching, bunda ± manfiy. \sqrt{4677521} dan i\sqrt{-\left(4677521-83820\sqrt{4578}\right)} ni ayirish.
x=\frac{\sqrt{4578}\left(-i\sqrt{83820\sqrt{4578}-4677521}+\sqrt{4677521}\right)}{9156}
\sqrt{4677521}-i\sqrt{-4677521+83820\sqrt{4578}} ni 2\sqrt{4578} ga bo'lish.
x=\frac{\sqrt{4578}\left(\sqrt{4677521}+i\sqrt{83820\sqrt{4578}-4677521}\right)}{9156} x=\frac{\sqrt{4578}\left(-i\sqrt{83820\sqrt{4578}-4677521}+\sqrt{4677521}\right)}{9156}
Tenglama yechildi.
\sqrt{4578}x^{2}-\sqrt{4677521}x=10523-31478
Ikkala tarafdan 31478 ni ayirish.
\sqrt{4578}x^{2}-\sqrt{4677521}x=-20955
-20955 olish uchun 10523 dan 31478 ni ayirish.
\sqrt{4578}x^{2}+\left(-\sqrt{4677521}\right)x=-20955
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{\sqrt{4578}x^{2}+\left(-\sqrt{4677521}\right)x}{\sqrt{4578}}=-\frac{20955}{\sqrt{4578}}
Ikki tarafini \sqrt{4578} ga bo‘ling.
x^{2}+\left(-\frac{\sqrt{4677521}}{\sqrt{4578}}\right)x=-\frac{20955}{\sqrt{4578}}
\sqrt{4578} ga bo'lish \sqrt{4578} ga ko'paytirishni bekor qiladi.
x^{2}+\left(-\frac{\sqrt{21413691138}}{4578}\right)x=-\frac{20955}{\sqrt{4578}}
-\sqrt{4677521} ni \sqrt{4578} ga bo'lish.
x^{2}+\left(-\frac{\sqrt{21413691138}}{4578}\right)x=-\frac{6985\sqrt{4578}}{1526}
-20955 ni \sqrt{4578} ga bo'lish.
x^{2}+\left(-\frac{\sqrt{21413691138}}{4578}\right)x+\left(-\frac{\sqrt{21413691138}}{9156}\right)^{2}=-\frac{6985\sqrt{4578}}{1526}+\left(-\frac{\sqrt{21413691138}}{9156}\right)^{2}
-\frac{\sqrt{21413691138}}{4578} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{\sqrt{21413691138}}{9156} olish uchun. Keyin, -\frac{\sqrt{21413691138}}{9156} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\left(-\frac{\sqrt{21413691138}}{4578}\right)x+\frac{4677521}{18312}=-\frac{6985\sqrt{4578}}{1526}+\frac{4677521}{18312}
-\frac{\sqrt{21413691138}}{9156} kvadratini chiqarish.
\left(x-\frac{\sqrt{21413691138}}{9156}\right)^{2}=-\frac{6985\sqrt{4578}}{1526}+\frac{4677521}{18312}
x^{2}+\left(-\frac{\sqrt{21413691138}}{4578}\right)x+\frac{4677521}{18312} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{\sqrt{21413691138}}{9156}\right)^{2}}=\sqrt{-\frac{6985\sqrt{4578}}{1526}+\frac{4677521}{18312}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{\sqrt{21413691138}}{9156}=\frac{i\sqrt{383727960\sqrt{4578}-21413691138}}{9156} x-\frac{\sqrt{21413691138}}{9156}=-\frac{i\sqrt{383727960\sqrt{4578}-21413691138}}{9156}
Qisqartirish.
x=\frac{\sqrt{21413691138}+i\sqrt{383727960\sqrt{4578}-21413691138}}{9156} x=\frac{-i\sqrt{383727960\sqrt{4578}-21413691138}+\sqrt{21413691138}}{9156}
\frac{\sqrt{21413691138}}{9156} ni tenglamaning ikkala tarafiga qo'shish.