Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
y uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}=\left(-\sqrt{149}\right)\left(6x-y-23\right)
\sqrt{37} ga 10x+7y+5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}=6\left(-\sqrt{149}\right)x-\left(-\sqrt{149}\right)y-23\left(-\sqrt{149}\right)
-\sqrt{149} ga 6x-y-23 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}=6\left(-\sqrt{149}\right)x+\sqrt{149}y-23\left(-\sqrt{149}\right)
1 hosil qilish uchun -1 va -1 ni ko'paytirish.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}=6\left(-\sqrt{149}\right)x+\sqrt{149}y+23\sqrt{149}
23 hosil qilish uchun -23 va -1 ni ko'paytirish.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}-6\left(-\sqrt{149}\right)x=\sqrt{149}y+23\sqrt{149}
Ikkala tarafdan 6\left(-\sqrt{149}\right)x ni ayirish.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}-6\left(-1\right)\sqrt{149}x=\sqrt{149}y+23\sqrt{149}
-6 hosil qilish uchun -1 va 6 ni ko'paytirish.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}+6\sqrt{149}x=\sqrt{149}y+23\sqrt{149}
6 hosil qilish uchun -6 va -1 ni ko'paytirish.
10\sqrt{37}x+5\sqrt{37}+6\sqrt{149}x=\sqrt{149}y+23\sqrt{149}-7\sqrt{37}y
Ikkala tarafdan 7\sqrt{37}y ni ayirish.
10\sqrt{37}x+6\sqrt{149}x=\sqrt{149}y+23\sqrt{149}-7\sqrt{37}y-5\sqrt{37}
Ikkala tarafdan 5\sqrt{37} ni ayirish.
\left(10\sqrt{37}+6\sqrt{149}\right)x=\sqrt{149}y+23\sqrt{149}-7\sqrt{37}y-5\sqrt{37}
x'ga ega bo'lgan barcha shartlarni birlashtirish.
\left(6\sqrt{149}+10\sqrt{37}\right)x=\sqrt{149}y-7\sqrt{37}y+23\sqrt{149}-5\sqrt{37}
Tenglama standart shaklda.
\frac{\left(6\sqrt{149}+10\sqrt{37}\right)x}{6\sqrt{149}+10\sqrt{37}}=\frac{\sqrt{149}y-7\sqrt{37}y+23\sqrt{149}-5\sqrt{37}}{6\sqrt{149}+10\sqrt{37}}
Ikki tarafini 10\sqrt{37}+6\sqrt{149} ga bo‘ling.
x=\frac{\sqrt{149}y-7\sqrt{37}y+23\sqrt{149}-5\sqrt{37}}{6\sqrt{149}+10\sqrt{37}}
10\sqrt{37}+6\sqrt{149} ga bo'lish 10\sqrt{37}+6\sqrt{149} ga ko'paytirishni bekor qiladi.
x=\frac{\frac{3\sqrt{149}-5\sqrt{37}}{416}\left(\sqrt{149}y-7\sqrt{37}y+23\sqrt{149}-5\sqrt{37}\right)}{2}
\sqrt{149}y+23\sqrt{149}-7\sqrt{37}y-5\sqrt{37} ni 10\sqrt{37}+6\sqrt{149} ga bo'lish.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}=\left(-\sqrt{149}\right)\left(6x-y-23\right)
\sqrt{37} ga 10x+7y+5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}=6\left(-\sqrt{149}\right)x-\left(-\sqrt{149}\right)y-23\left(-\sqrt{149}\right)
-\sqrt{149} ga 6x-y-23 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}=6\left(-\sqrt{149}\right)x+\sqrt{149}y-23\left(-\sqrt{149}\right)
1 hosil qilish uchun -1 va -1 ni ko'paytirish.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}=6\left(-\sqrt{149}\right)x+\sqrt{149}y+23\sqrt{149}
23 hosil qilish uchun -23 va -1 ni ko'paytirish.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}-\sqrt{149}y=6\left(-\sqrt{149}\right)x+23\sqrt{149}
Ikkala tarafdan \sqrt{149}y ni ayirish.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}-\sqrt{149}y=-6\sqrt{149}x+23\sqrt{149}
-6 hosil qilish uchun 6 va -1 ni ko'paytirish.
7\sqrt{37}y+5\sqrt{37}-\sqrt{149}y=-6\sqrt{149}x+23\sqrt{149}-10\sqrt{37}x
Ikkala tarafdan 10\sqrt{37}x ni ayirish.
7\sqrt{37}y-\sqrt{149}y=-6\sqrt{149}x+23\sqrt{149}-10\sqrt{37}x-5\sqrt{37}
Ikkala tarafdan 5\sqrt{37} ni ayirish.
\left(7\sqrt{37}-\sqrt{149}\right)y=-6\sqrt{149}x+23\sqrt{149}-10\sqrt{37}x-5\sqrt{37}
y'ga ega bo'lgan barcha shartlarni birlashtirish.
\left(7\sqrt{37}-\sqrt{149}\right)y=-6\sqrt{149}x-10\sqrt{37}x+23\sqrt{149}-5\sqrt{37}
Tenglama standart shaklda.
\frac{\left(7\sqrt{37}-\sqrt{149}\right)y}{7\sqrt{37}-\sqrt{149}}=\frac{-6\sqrt{149}x-10\sqrt{37}x+23\sqrt{149}-5\sqrt{37}}{7\sqrt{37}-\sqrt{149}}
Ikki tarafini 7\sqrt{37}-\sqrt{149} ga bo‘ling.
y=\frac{-6\sqrt{149}x-10\sqrt{37}x+23\sqrt{149}-5\sqrt{37}}{7\sqrt{37}-\sqrt{149}}
7\sqrt{37}-\sqrt{149} ga bo'lish 7\sqrt{37}-\sqrt{149} ga ko'paytirishni bekor qiladi.
y=\frac{\sqrt{149}+7\sqrt{37}}{1664}\left(-6\sqrt{149}x-10\sqrt{37}x+23\sqrt{149}-5\sqrt{37}\right)
-6\sqrt{149}x+23\sqrt{149}-10\sqrt{37}x-5\sqrt{37} ni 7\sqrt{37}-\sqrt{149} ga bo'lish.