Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
y uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}=\sqrt{149}\left(6x-y-23\right)
\sqrt{37} ga 10x+7y+5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}=6\sqrt{149}x-\sqrt{149}y-23\sqrt{149}
\sqrt{149} ga 6x-y-23 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}-6\sqrt{149}x=-\sqrt{149}y-23\sqrt{149}
Ikkala tarafdan 6\sqrt{149}x ni ayirish.
10\sqrt{37}x+5\sqrt{37}-6\sqrt{149}x=-\sqrt{149}y-23\sqrt{149}-7\sqrt{37}y
Ikkala tarafdan 7\sqrt{37}y ni ayirish.
10\sqrt{37}x-6\sqrt{149}x=-\sqrt{149}y-23\sqrt{149}-7\sqrt{37}y-5\sqrt{37}
Ikkala tarafdan 5\sqrt{37} ni ayirish.
\left(10\sqrt{37}-6\sqrt{149}\right)x=-\sqrt{149}y-23\sqrt{149}-7\sqrt{37}y-5\sqrt{37}
x'ga ega bo'lgan barcha shartlarni birlashtirish.
\left(10\sqrt{37}-6\sqrt{149}\right)x=-7\sqrt{37}y-\sqrt{149}y-5\sqrt{37}-23\sqrt{149}
Tenglama standart shaklda.
\frac{\left(10\sqrt{37}-6\sqrt{149}\right)x}{10\sqrt{37}-6\sqrt{149}}=\frac{-7\sqrt{37}y-\sqrt{149}y-5\sqrt{37}-23\sqrt{149}}{10\sqrt{37}-6\sqrt{149}}
Ikki tarafini 10\sqrt{37}-6\sqrt{149} ga bo‘ling.
x=\frac{-7\sqrt{37}y-\sqrt{149}y-5\sqrt{37}-23\sqrt{149}}{10\sqrt{37}-6\sqrt{149}}
10\sqrt{37}-6\sqrt{149} ga bo'lish 10\sqrt{37}-6\sqrt{149} ga ko'paytirishni bekor qiladi.
x=\frac{\frac{3\sqrt{149}+5\sqrt{37}}{416}\left(7\sqrt{37}y+\sqrt{149}y+5\sqrt{37}+23\sqrt{149}\right)}{2}
-\sqrt{149}y-23\sqrt{149}-7\sqrt{37}y-5\sqrt{37} ni 10\sqrt{37}-6\sqrt{149} ga bo'lish.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}=\sqrt{149}\left(6x-y-23\right)
\sqrt{37} ga 10x+7y+5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}=6\sqrt{149}x-\sqrt{149}y-23\sqrt{149}
\sqrt{149} ga 6x-y-23 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}+\sqrt{149}y=6\sqrt{149}x-23\sqrt{149}
\sqrt{149}y ni ikki tarafga qo’shing.
7\sqrt{37}y+5\sqrt{37}+\sqrt{149}y=6\sqrt{149}x-23\sqrt{149}-10\sqrt{37}x
Ikkala tarafdan 10\sqrt{37}x ni ayirish.
7\sqrt{37}y+\sqrt{149}y=6\sqrt{149}x-23\sqrt{149}-10\sqrt{37}x-5\sqrt{37}
Ikkala tarafdan 5\sqrt{37} ni ayirish.
\left(7\sqrt{37}+\sqrt{149}\right)y=6\sqrt{149}x-23\sqrt{149}-10\sqrt{37}x-5\sqrt{37}
y'ga ega bo'lgan barcha shartlarni birlashtirish.
\left(\sqrt{149}+7\sqrt{37}\right)y=6\sqrt{149}x-10\sqrt{37}x-5\sqrt{37}-23\sqrt{149}
Tenglama standart shaklda.
\frac{\left(\sqrt{149}+7\sqrt{37}\right)y}{\sqrt{149}+7\sqrt{37}}=\frac{6\sqrt{149}x-10\sqrt{37}x-5\sqrt{37}-23\sqrt{149}}{\sqrt{149}+7\sqrt{37}}
Ikki tarafini 7\sqrt{37}+\sqrt{149} ga bo‘ling.
y=\frac{6\sqrt{149}x-10\sqrt{37}x-5\sqrt{37}-23\sqrt{149}}{\sqrt{149}+7\sqrt{37}}
7\sqrt{37}+\sqrt{149} ga bo'lish 7\sqrt{37}+\sqrt{149} ga ko'paytirishni bekor qiladi.
y=\frac{\sqrt{5513}x-67x+41-3\sqrt{5513}}{32}
6\sqrt{149}x-23\sqrt{149}-10\sqrt{37}x-5\sqrt{37} ni 7\sqrt{37}+\sqrt{149} ga bo'lish.