Baholash
\frac{3\sqrt{2}}{4}+\frac{4\sqrt{3}}{3}\approx 3,370061249
Baham ko'rish
Klipbordga nusxa olish
4\sqrt{2}+\sqrt{0\times 5}-2\sqrt{\frac{1}{3}}-\sqrt{\frac{1}{8}}+\sqrt{12}-\sqrt{18}
Faktor: 32=4^{2}\times 2. \sqrt{4^{2}\times 2} koʻpaytmasining kvadrat ildizini \sqrt{4^{2}}\sqrt{2} kvadrat ildizlarining koʻpaytmasi sifatida qayta yozing. 4^{2} ning kvadrat ildizini chiqarish.
4\sqrt{2}+\sqrt{0}-2\sqrt{\frac{1}{3}}-\sqrt{\frac{1}{8}}+\sqrt{12}-\sqrt{18}
0 hosil qilish uchun 0 va 5 ni ko'paytirish.
4\sqrt{2}+0-2\sqrt{\frac{1}{3}}-\sqrt{\frac{1}{8}}+\sqrt{12}-\sqrt{18}
0 ning kvadrat ildizini hisoblab, 0 natijaga ega bo‘ling.
4\sqrt{2}+0-2\times \frac{\sqrt{1}}{\sqrt{3}}-\sqrt{\frac{1}{8}}+\sqrt{12}-\sqrt{18}
\sqrt{\frac{1}{3}} boʻlinmasining kvadrat ildizini \frac{\sqrt{1}}{\sqrt{3}} kvadrat ildizlarining boʻlinmasi sifatida qayta yozing.
4\sqrt{2}+0-2\times \frac{1}{\sqrt{3}}-\sqrt{\frac{1}{8}}+\sqrt{12}-\sqrt{18}
1 ning kvadrat ildizini hisoblab, 1 natijaga ega bo‘ling.
4\sqrt{2}+0-2\times \frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}-\sqrt{\frac{1}{8}}+\sqrt{12}-\sqrt{18}
\frac{1}{\sqrt{3}} maxrajini \sqrt{3} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
4\sqrt{2}+0-2\times \frac{\sqrt{3}}{3}-\sqrt{\frac{1}{8}}+\sqrt{12}-\sqrt{18}
\sqrt{3} kvadrati – 3.
4\sqrt{2}+0+\frac{-2\sqrt{3}}{3}-\sqrt{\frac{1}{8}}+\sqrt{12}-\sqrt{18}
-2\times \frac{\sqrt{3}}{3} ni yagona kasrga aylantiring.
4\sqrt{2}+0+\frac{-2\sqrt{3}}{3}-\frac{\sqrt{1}}{\sqrt{8}}+\sqrt{12}-\sqrt{18}
\sqrt{\frac{1}{8}} boʻlinmasining kvadrat ildizini \frac{\sqrt{1}}{\sqrt{8}} kvadrat ildizlarining boʻlinmasi sifatida qayta yozing.
4\sqrt{2}+0+\frac{-2\sqrt{3}}{3}-\frac{1}{\sqrt{8}}+\sqrt{12}-\sqrt{18}
1 ning kvadrat ildizini hisoblab, 1 natijaga ega bo‘ling.
4\sqrt{2}+0+\frac{-2\sqrt{3}}{3}-\frac{1}{2\sqrt{2}}+\sqrt{12}-\sqrt{18}
Faktor: 8=2^{2}\times 2. \sqrt{2^{2}\times 2} koʻpaytmasining kvadrat ildizini \sqrt{2^{2}}\sqrt{2} kvadrat ildizlarining koʻpaytmasi sifatida qayta yozing. 2^{2} ning kvadrat ildizini chiqarish.
4\sqrt{2}+0+\frac{-2\sqrt{3}}{3}-\frac{\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}+\sqrt{12}-\sqrt{18}
\frac{1}{2\sqrt{2}} maxrajini \sqrt{2} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
4\sqrt{2}+0+\frac{-2\sqrt{3}}{3}-\frac{\sqrt{2}}{2\times 2}+\sqrt{12}-\sqrt{18}
\sqrt{2} kvadrati – 2.
4\sqrt{2}+0+\frac{-2\sqrt{3}}{3}-\frac{\sqrt{2}}{4}+\sqrt{12}-\sqrt{18}
4 hosil qilish uchun 2 va 2 ni ko'paytirish.
4\sqrt{2}+0+\frac{-2\sqrt{3}}{3}-\frac{\sqrt{2}}{4}+2\sqrt{3}-\sqrt{18}
Faktor: 12=2^{2}\times 3. \sqrt{2^{2}\times 3} koʻpaytmasining kvadrat ildizini \sqrt{2^{2}}\sqrt{3} kvadrat ildizlarining koʻpaytmasi sifatida qayta yozing. 2^{2} ning kvadrat ildizini chiqarish.
4\sqrt{2}+0+\frac{-2\sqrt{3}}{3}-\frac{\sqrt{2}}{4}+2\sqrt{3}-3\sqrt{2}
Faktor: 18=3^{2}\times 2. \sqrt{3^{2}\times 2} koʻpaytmasining kvadrat ildizini \sqrt{3^{2}}\sqrt{2} kvadrat ildizlarining koʻpaytmasi sifatida qayta yozing. 3^{2} ning kvadrat ildizini chiqarish.
\sqrt{2}+0+\frac{-2\sqrt{3}}{3}-\frac{\sqrt{2}}{4}+2\sqrt{3}
\sqrt{2} ni olish uchun 4\sqrt{2} va -3\sqrt{2} ni birlashtirish.
\frac{3\left(\sqrt{2}+0+2\sqrt{3}\right)}{3}+\frac{-2\sqrt{3}}{3}-\frac{\sqrt{2}}{4}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. \sqrt{2}+0+2\sqrt{3} ni \frac{3}{3} marotabaga ko'paytirish.
\frac{3\left(\sqrt{2}+0+2\sqrt{3}\right)-2\sqrt{3}}{3}-\frac{\sqrt{2}}{4}
\frac{3\left(\sqrt{2}+0+2\sqrt{3}\right)}{3} va \frac{-2\sqrt{3}}{3} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{3\sqrt{2}+6\sqrt{3}-2\sqrt{3}}{3}-\frac{\sqrt{2}}{4}
3\left(\sqrt{2}+0+2\sqrt{3}\right)-2\sqrt{3} ichidagi ko‘paytirishlarni bajaring.
\frac{3\sqrt{2}+4\sqrt{3}}{3}-\frac{\sqrt{2}}{4}
3\sqrt{2}+6\sqrt{3}-2\sqrt{3} hisob-kitobini qiling.
\frac{4\left(3\sqrt{2}+4\sqrt{3}\right)}{12}-\frac{3\sqrt{2}}{12}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 3 va 4 ning eng kichik umumiy karralisi 12. \frac{3\sqrt{2}+4\sqrt{3}}{3} ni \frac{4}{4} marotabaga ko'paytirish. \frac{\sqrt{2}}{4} ni \frac{3}{3} marotabaga ko'paytirish.
\frac{4\left(3\sqrt{2}+4\sqrt{3}\right)-3\sqrt{2}}{12}
\frac{4\left(3\sqrt{2}+4\sqrt{3}\right)}{12} va \frac{3\sqrt{2}}{12} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{12\sqrt{2}+16\sqrt{3}-3\sqrt{2}}{12}
4\left(3\sqrt{2}+4\sqrt{3}\right)-3\sqrt{2} ichidagi ko‘paytirishlarni bajaring.
\frac{9\sqrt{2}+16\sqrt{3}}{12}
12\sqrt{2}+16\sqrt{3}-3\sqrt{2} hisob-kitobini qiling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}