Baholash
\frac{1}{500}=0,002
Omil
\frac{1}{2 ^ {2} \cdot 5 ^ {3}} = 0,002
Baham ko'rish
Klipbordga nusxa olish
\sqrt{20\times \frac{1}{1000000}\times 0\times 0\times 2\times 3+400\times 10^{-12}\times 10000}
-6 daraja ko‘rsatkichini 10 ga hisoblang va \frac{1}{1000000} ni qiymatni oling.
\sqrt{\frac{1}{50000}\times 0\times 0\times 2\times 3+400\times 10^{-12}\times 10000}
\frac{1}{50000} hosil qilish uchun 20 va \frac{1}{1000000} ni ko'paytirish.
\sqrt{0\times 0\times 2\times 3+400\times 10^{-12}\times 10000}
0 hosil qilish uchun \frac{1}{50000} va 0 ni ko'paytirish.
\sqrt{0\times 2\times 3+400\times 10^{-12}\times 10000}
0 hosil qilish uchun 0 va 0 ni ko'paytirish.
\sqrt{0\times 3+400\times 10^{-12}\times 10000}
0 hosil qilish uchun 0 va 2 ni ko'paytirish.
\sqrt{0+400\times 10^{-12}\times 10000}
0 hosil qilish uchun 0 va 3 ni ko'paytirish.
\sqrt{0+400\times \frac{1}{1000000000000}\times 10000}
-12 daraja ko‘rsatkichini 10 ga hisoblang va \frac{1}{1000000000000} ni qiymatni oling.
\sqrt{0+\frac{1}{2500000000}\times 10000}
\frac{1}{2500000000} hosil qilish uchun 400 va \frac{1}{1000000000000} ni ko'paytirish.
\sqrt{0+\frac{1}{250000}}
\frac{1}{250000} hosil qilish uchun \frac{1}{2500000000} va 10000 ni ko'paytirish.
\sqrt{\frac{1}{250000}}
\frac{1}{250000} olish uchun 0 va \frac{1}{250000}'ni qo'shing.
\frac{1}{500}
\frac{1}{250000} boʻlinmasining kvadrat ildizini \frac{\sqrt{1}}{\sqrt{250000}} kvadrat ildizlarining boʻlinmasi sifatida qayta yozing. Surat va maxrajni kvadrat ildizdan chiqaring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}