Baholash
\frac{15\left(\sqrt{5}-\sqrt{3}\right)}{2}\approx 3,780128774
Baham ko'rish
Klipbordga nusxa olish
\frac{\sqrt{15}}{\frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+\frac{1}{\sqrt{5}}}
\frac{1}{\sqrt{3}} maxrajini \sqrt{3} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{\sqrt{15}}{\frac{\sqrt{3}}{3}+\frac{1}{\sqrt{5}}}
\sqrt{3} kvadrati – 3.
\frac{\sqrt{15}}{\frac{\sqrt{3}}{3}+\frac{\sqrt{5}}{\left(\sqrt{5}\right)^{2}}}
\frac{1}{\sqrt{5}} maxrajini \sqrt{5} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{\sqrt{15}}{\frac{\sqrt{3}}{3}+\frac{\sqrt{5}}{5}}
\sqrt{5} kvadrati – 5.
\frac{\sqrt{15}}{\frac{5\sqrt{3}}{15}+\frac{3\sqrt{5}}{15}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 3 va 5 ning eng kichik umumiy karralisi 15. \frac{\sqrt{3}}{3} ni \frac{5}{5} marotabaga ko'paytirish. \frac{\sqrt{5}}{5} ni \frac{3}{3} marotabaga ko'paytirish.
\frac{\sqrt{15}}{\frac{5\sqrt{3}+3\sqrt{5}}{15}}
\frac{5\sqrt{3}}{15} va \frac{3\sqrt{5}}{15} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{\sqrt{15}\times 15}{5\sqrt{3}+3\sqrt{5}}
\sqrt{15} ni \frac{5\sqrt{3}+3\sqrt{5}}{15} ga bo'lish \sqrt{15} ga k'paytirish \frac{5\sqrt{3}+3\sqrt{5}}{15} ga qaytarish.
\frac{\sqrt{15}\times 15\left(5\sqrt{3}-3\sqrt{5}\right)}{\left(5\sqrt{3}+3\sqrt{5}\right)\left(5\sqrt{3}-3\sqrt{5}\right)}
\frac{\sqrt{15}\times 15}{5\sqrt{3}+3\sqrt{5}} maxrajini 5\sqrt{3}-3\sqrt{5} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{\sqrt{15}\times 15\left(5\sqrt{3}-3\sqrt{5}\right)}{\left(5\sqrt{3}\right)^{2}-\left(3\sqrt{5}\right)^{2}}
Hisoblang: \left(5\sqrt{3}+3\sqrt{5}\right)\left(5\sqrt{3}-3\sqrt{5}\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{15}\times 15\left(5\sqrt{3}-3\sqrt{5}\right)}{5^{2}\left(\sqrt{3}\right)^{2}-\left(3\sqrt{5}\right)^{2}}
\left(5\sqrt{3}\right)^{2} ni kengaytirish.
\frac{\sqrt{15}\times 15\left(5\sqrt{3}-3\sqrt{5}\right)}{25\left(\sqrt{3}\right)^{2}-\left(3\sqrt{5}\right)^{2}}
2 daraja ko‘rsatkichini 5 ga hisoblang va 25 ni qiymatni oling.
\frac{\sqrt{15}\times 15\left(5\sqrt{3}-3\sqrt{5}\right)}{25\times 3-\left(3\sqrt{5}\right)^{2}}
\sqrt{3} kvadrati – 3.
\frac{\sqrt{15}\times 15\left(5\sqrt{3}-3\sqrt{5}\right)}{75-\left(3\sqrt{5}\right)^{2}}
75 hosil qilish uchun 25 va 3 ni ko'paytirish.
\frac{\sqrt{15}\times 15\left(5\sqrt{3}-3\sqrt{5}\right)}{75-3^{2}\left(\sqrt{5}\right)^{2}}
\left(3\sqrt{5}\right)^{2} ni kengaytirish.
\frac{\sqrt{15}\times 15\left(5\sqrt{3}-3\sqrt{5}\right)}{75-9\left(\sqrt{5}\right)^{2}}
2 daraja ko‘rsatkichini 3 ga hisoblang va 9 ni qiymatni oling.
\frac{\sqrt{15}\times 15\left(5\sqrt{3}-3\sqrt{5}\right)}{75-9\times 5}
\sqrt{5} kvadrati – 5.
\frac{\sqrt{15}\times 15\left(5\sqrt{3}-3\sqrt{5}\right)}{75-45}
45 hosil qilish uchun 9 va 5 ni ko'paytirish.
\frac{\sqrt{15}\times 15\left(5\sqrt{3}-3\sqrt{5}\right)}{30}
30 olish uchun 75 dan 45 ni ayirish.
\sqrt{15}\times \frac{1}{2}\left(5\sqrt{3}-3\sqrt{5}\right)
\sqrt{15}\times \frac{1}{2}\left(5\sqrt{3}-3\sqrt{5}\right) ni olish uchun \sqrt{15}\times 15\left(5\sqrt{3}-3\sqrt{5}\right) ni 30 ga bo‘ling.
\sqrt{15}\times \frac{1}{2}\times 5\sqrt{3}+\sqrt{15}\times \frac{1}{2}\left(-3\right)\sqrt{5}
\sqrt{15}\times \frac{1}{2} ga 5\sqrt{3}-3\sqrt{5} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\sqrt{3}\sqrt{5}\times \frac{1}{2}\times 5\sqrt{3}+\sqrt{15}\times \frac{1}{2}\left(-3\right)\sqrt{5}
Faktor: 15=3\times 5. \sqrt{3\times 5} koʻpaytmasining kvadrat ildizini \sqrt{3}\sqrt{5} kvadrat ildizlarining koʻpaytmasi sifatida qayta yozing.
3\times \frac{1}{2}\times 5\sqrt{5}+\sqrt{15}\times \frac{1}{2}\left(-3\right)\sqrt{5}
3 hosil qilish uchun \sqrt{3} va \sqrt{3} ni ko'paytirish.
\frac{3}{2}\times 5\sqrt{5}+\sqrt{15}\times \frac{1}{2}\left(-3\right)\sqrt{5}
\frac{3}{2} hosil qilish uchun 3 va \frac{1}{2} ni ko'paytirish.
\frac{3\times 5}{2}\sqrt{5}+\sqrt{15}\times \frac{1}{2}\left(-3\right)\sqrt{5}
\frac{3}{2}\times 5 ni yagona kasrga aylantiring.
\frac{15}{2}\sqrt{5}+\sqrt{15}\times \frac{1}{2}\left(-3\right)\sqrt{5}
15 hosil qilish uchun 3 va 5 ni ko'paytirish.
\frac{15}{2}\sqrt{5}+\sqrt{5}\sqrt{3}\times \frac{1}{2}\left(-3\right)\sqrt{5}
Faktor: 15=5\times 3. \sqrt{5\times 3} koʻpaytmasining kvadrat ildizini \sqrt{5}\sqrt{3} kvadrat ildizlarining koʻpaytmasi sifatida qayta yozing.
\frac{15}{2}\sqrt{5}+5\times \frac{1}{2}\left(-3\right)\sqrt{3}
5 hosil qilish uchun \sqrt{5} va \sqrt{5} ni ko'paytirish.
\frac{15}{2}\sqrt{5}+\frac{5}{2}\left(-3\right)\sqrt{3}
\frac{5}{2} hosil qilish uchun 5 va \frac{1}{2} ni ko'paytirish.
\frac{15}{2}\sqrt{5}+\frac{5\left(-3\right)}{2}\sqrt{3}
\frac{5}{2}\left(-3\right) ni yagona kasrga aylantiring.
\frac{15}{2}\sqrt{5}+\frac{-15}{2}\sqrt{3}
-15 hosil qilish uchun 5 va -3 ni ko'paytirish.
\frac{15}{2}\sqrt{5}-\frac{15}{2}\sqrt{3}
\frac{-15}{2} kasri manfiy belgini olib tashlash bilan -\frac{15}{2} sifatida qayta yozilishi mumkin.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}