Baholash
\frac{\sqrt{31}+15}{2}\approx 10,283882181
Omil
\frac{\sqrt{31} + 15}{2} = 10,283882181415011
Baham ko'rish
Klipbordga nusxa olish
\sqrt{\frac{81}{4}+6^{2}}+\sqrt{\left(\frac{9}{2}\right)^{2}-\frac{12\times 2+9}{2}+4}
2 daraja ko‘rsatkichini \frac{9}{2} ga hisoblang va \frac{81}{4} ni qiymatni oling.
\sqrt{\frac{81}{4}+36}+\sqrt{\left(\frac{9}{2}\right)^{2}-\frac{12\times 2+9}{2}+4}
2 daraja ko‘rsatkichini 6 ga hisoblang va 36 ni qiymatni oling.
\sqrt{\frac{81}{4}+\frac{144}{4}}+\sqrt{\left(\frac{9}{2}\right)^{2}-\frac{12\times 2+9}{2}+4}
36 ni \frac{144}{4} kasrga o‘giring.
\sqrt{\frac{81+144}{4}}+\sqrt{\left(\frac{9}{2}\right)^{2}-\frac{12\times 2+9}{2}+4}
\frac{81}{4} va \frac{144}{4} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\sqrt{\frac{225}{4}}+\sqrt{\left(\frac{9}{2}\right)^{2}-\frac{12\times 2+9}{2}+4}
225 olish uchun 81 va 144'ni qo'shing.
\frac{15}{2}+\sqrt{\left(\frac{9}{2}\right)^{2}-\frac{12\times 2+9}{2}+4}
\frac{225}{4} boʻlinmasining kvadrat ildizini \frac{\sqrt{225}}{\sqrt{4}} kvadrat ildizlarining boʻlinmasi sifatida qayta yozing. Surat va maxrajni kvadrat ildizdan chiqaring.
\frac{15}{2}+\sqrt{\frac{81}{4}-\frac{12\times 2+9}{2}+4}
2 daraja ko‘rsatkichini \frac{9}{2} ga hisoblang va \frac{81}{4} ni qiymatni oling.
\frac{15}{2}+\sqrt{\frac{81}{4}-\frac{24+9}{2}+4}
24 hosil qilish uchun 12 va 2 ni ko'paytirish.
\frac{15}{2}+\sqrt{\frac{81}{4}-\frac{33}{2}+4}
33 olish uchun 24 va 9'ni qo'shing.
\frac{15}{2}+\sqrt{\frac{81}{4}-\frac{66}{4}+4}
4 va 2 ning eng kichik umumiy karralisi 4 ga teng. \frac{81}{4} va \frac{33}{2} ni 4 maxraj bilan kasrlarga aylantirib oling.
\frac{15}{2}+\sqrt{\frac{81-66}{4}+4}
\frac{81}{4} va \frac{66}{4} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{15}{2}+\sqrt{\frac{15}{4}+4}
15 olish uchun 81 dan 66 ni ayirish.
\frac{15}{2}+\sqrt{\frac{15}{4}+\frac{16}{4}}
4 ni \frac{16}{4} kasrga o‘giring.
\frac{15}{2}+\sqrt{\frac{15+16}{4}}
\frac{15}{4} va \frac{16}{4} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{15}{2}+\sqrt{\frac{31}{4}}
31 olish uchun 15 va 16'ni qo'shing.
\frac{15}{2}+\frac{\sqrt{31}}{\sqrt{4}}
\sqrt{\frac{31}{4}} boʻlinmasining kvadrat ildizini \frac{\sqrt{31}}{\sqrt{4}} kvadrat ildizlarining boʻlinmasi sifatida qayta yozing.
\frac{15}{2}+\frac{\sqrt{31}}{2}
4 ning kvadrat ildizini hisoblab, 2 natijaga ega bo‘ling.
\frac{15+\sqrt{31}}{2}
\frac{15}{2} va \frac{\sqrt{31}}{2} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}