Baholash
\frac{40000000\sqrt{910}}{91}\approx 13259870,882635918
Baham ko'rish
Klipbordga nusxa olish
\sqrt{\frac{2\times 16\times 500\times 10^{12}}{91}}
Ayni asosning daraja ko'rsatkichi bo'lish uchun maxrajning darajasini surat darajasidan bo'ling.
\sqrt{\frac{32\times 500\times 10^{12}}{91}}
32 hosil qilish uchun 2 va 16 ni ko'paytirish.
\sqrt{\frac{16000\times 10^{12}}{91}}
16000 hosil qilish uchun 32 va 500 ni ko'paytirish.
\sqrt{\frac{16000\times 1000000000000}{91}}
12 daraja ko‘rsatkichini 10 ga hisoblang va 1000000000000 ni qiymatni oling.
\sqrt{\frac{16000000000000000}{91}}
16000000000000000 hosil qilish uchun 16000 va 1000000000000 ni ko'paytirish.
\frac{\sqrt{16000000000000000}}{\sqrt{91}}
\sqrt{\frac{16000000000000000}{91}} boʻlinmasining kvadrat ildizini \frac{\sqrt{16000000000000000}}{\sqrt{91}} kvadrat ildizlarining boʻlinmasi sifatida qayta yozing.
\frac{40000000\sqrt{10}}{\sqrt{91}}
Faktor: 16000000000000000=40000000^{2}\times 10. \sqrt{40000000^{2}\times 10} koʻpaytmasining kvadrat ildizini \sqrt{40000000^{2}}\sqrt{10} kvadrat ildizlarining koʻpaytmasi sifatida qayta yozing. 40000000^{2} ning kvadrat ildizini chiqarish.
\frac{40000000\sqrt{10}\sqrt{91}}{\left(\sqrt{91}\right)^{2}}
\frac{40000000\sqrt{10}}{\sqrt{91}} maxrajini \sqrt{91} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{40000000\sqrt{10}\sqrt{91}}{91}
\sqrt{91} kvadrati – 91.
\frac{40000000\sqrt{910}}{91}
\sqrt{10} va \sqrt{91} ni koʻpaytirish uchun kvadrat ildiz ichidagi sonlarni koʻpaytiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}