Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(\sqrt{\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{2}x}\right)^{2}=x^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
\left(\sqrt{\frac{2}{4}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{2}x}\right)^{2}=x^{2}
2 va 4 ning eng kichik umumiy karralisi 4 ga teng. \frac{1}{2} va \frac{1}{4} ni 4 maxraj bilan kasrlarga aylantirib oling.
\left(\sqrt{\frac{2+1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{2}x}\right)^{2}=x^{2}
\frac{2}{4} va \frac{1}{4} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\left(\sqrt{\frac{3}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{2}x}\right)^{2}=x^{2}
3 olish uchun 2 va 1'ni qo'shing.
\left(\sqrt{\frac{6}{8}+\frac{1}{8}+\frac{1}{16}+\frac{1}{2}x}\right)^{2}=x^{2}
4 va 8 ning eng kichik umumiy karralisi 8 ga teng. \frac{3}{4} va \frac{1}{8} ni 8 maxraj bilan kasrlarga aylantirib oling.
\left(\sqrt{\frac{6+1}{8}+\frac{1}{16}+\frac{1}{2}x}\right)^{2}=x^{2}
\frac{6}{8} va \frac{1}{8} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\left(\sqrt{\frac{7}{8}+\frac{1}{16}+\frac{1}{2}x}\right)^{2}=x^{2}
7 olish uchun 6 va 1'ni qo'shing.
\left(\sqrt{\frac{14}{16}+\frac{1}{16}+\frac{1}{2}x}\right)^{2}=x^{2}
8 va 16 ning eng kichik umumiy karralisi 16 ga teng. \frac{7}{8} va \frac{1}{16} ni 16 maxraj bilan kasrlarga aylantirib oling.
\left(\sqrt{\frac{14+1}{16}+\frac{1}{2}x}\right)^{2}=x^{2}
\frac{14}{16} va \frac{1}{16} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\left(\sqrt{\frac{15}{16}+\frac{1}{2}x}\right)^{2}=x^{2}
15 olish uchun 14 va 1'ni qo'shing.
\frac{15}{16}+\frac{1}{2}x=x^{2}
2 daraja ko‘rsatkichini \sqrt{\frac{15}{16}+\frac{1}{2}x} ga hisoblang va \frac{15}{16}+\frac{1}{2}x ni qiymatni oling.
\frac{15}{16}+\frac{1}{2}x-x^{2}=0
Ikkala tarafdan x^{2} ni ayirish.
-x^{2}+\frac{1}{2}x+\frac{15}{16}=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\frac{1}{2}±\sqrt{\left(\frac{1}{2}\right)^{2}-4\left(-1\right)\times \frac{15}{16}}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, \frac{1}{2} ni b va \frac{15}{16} ni c bilan almashtiring.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}-4\left(-1\right)\times \frac{15}{16}}}{2\left(-1\right)}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{2} kvadratini chiqarish.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}+4\times \frac{15}{16}}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1+15}{4}}}{2\left(-1\right)}
4 ni \frac{15}{16} marotabaga ko'paytirish.
x=\frac{-\frac{1}{2}±\sqrt{4}}{2\left(-1\right)}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{1}{4} ni \frac{15}{4} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
x=\frac{-\frac{1}{2}±2}{2\left(-1\right)}
4 ning kvadrat ildizini chiqarish.
x=\frac{-\frac{1}{2}±2}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{\frac{3}{2}}{-2}
x=\frac{-\frac{1}{2}±2}{-2} tenglamasini yeching, bunda ± musbat. -\frac{1}{2} ni 2 ga qo'shish.
x=-\frac{3}{4}
\frac{3}{2} ni -2 ga bo'lish.
x=-\frac{\frac{5}{2}}{-2}
x=\frac{-\frac{1}{2}±2}{-2} tenglamasini yeching, bunda ± manfiy. -\frac{1}{2} dan 2 ni ayirish.
x=\frac{5}{4}
-\frac{5}{2} ni -2 ga bo'lish.
x=-\frac{3}{4} x=\frac{5}{4}
Tenglama yechildi.
\sqrt{\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{2}\left(-\frac{3}{4}\right)}=-\frac{3}{4}
\sqrt{\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{2}x}=x tenglamasida x uchun -\frac{3}{4} ni almashtiring.
\frac{3}{4}=-\frac{3}{4}
Qisqartirish. x=-\frac{3}{4} qiymati bu tenglamani qoniqtirmaydi, chunki oʻng va chap tarafdagi belgilar bir-biriga qarama-qarshi.
\sqrt{\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{2}\times \frac{5}{4}}=\frac{5}{4}
\sqrt{\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{2}x}=x tenglamasida x uchun \frac{5}{4} ni almashtiring.
\frac{5}{4}=\frac{5}{4}
Qisqartirish. x=\frac{5}{4} tenglamani qoniqtiradi.
x=\frac{5}{4}
\sqrt{\frac{x}{2}+\frac{15}{16}}=x tenglamasi noyob yechimga ega.