Baholash
\frac{\sqrt{11442}}{6}\approx 17,827880786
Viktorina
Arithmetic
5xshash muammolar:
\sqrt{ \frac{ { 8 }^{ 2 } -3 }{ \frac{ 6 }{ 5 } } +3 \times 89 }
Baham ko'rish
Klipbordga nusxa olish
\sqrt{\frac{64-3}{\frac{6}{5}}+3\times 89}
2 daraja ko‘rsatkichini 8 ga hisoblang va 64 ni qiymatni oling.
\sqrt{\frac{61}{\frac{6}{5}}+3\times 89}
61 olish uchun 64 dan 3 ni ayirish.
\sqrt{61\times \frac{5}{6}+3\times 89}
61 ni \frac{6}{5} ga bo'lish 61 ga k'paytirish \frac{6}{5} ga qaytarish.
\sqrt{\frac{61\times 5}{6}+3\times 89}
61\times \frac{5}{6} ni yagona kasrga aylantiring.
\sqrt{\frac{305}{6}+3\times 89}
305 hosil qilish uchun 61 va 5 ni ko'paytirish.
\sqrt{\frac{305}{6}+267}
267 hosil qilish uchun 3 va 89 ni ko'paytirish.
\sqrt{\frac{305}{6}+\frac{1602}{6}}
267 ni \frac{1602}{6} kasrga o‘giring.
\sqrt{\frac{305+1602}{6}}
\frac{305}{6} va \frac{1602}{6} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\sqrt{\frac{1907}{6}}
1907 olish uchun 305 va 1602'ni qo'shing.
\frac{\sqrt{1907}}{\sqrt{6}}
\sqrt{\frac{1907}{6}} boʻlinmasining kvadrat ildizini \frac{\sqrt{1907}}{\sqrt{6}} kvadrat ildizlarining boʻlinmasi sifatida qayta yozing.
\frac{\sqrt{1907}\sqrt{6}}{\left(\sqrt{6}\right)^{2}}
\frac{\sqrt{1907}}{\sqrt{6}} maxrajini \sqrt{6} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{\sqrt{1907}\sqrt{6}}{6}
\sqrt{6} kvadrati – 6.
\frac{\sqrt{11442}}{6}
\sqrt{1907} va \sqrt{6} ni koʻpaytirish uchun kvadrat ildiz ichidagi sonlarni koʻpaytiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}