y uchun yechish
y=3
Grafik
Baham ko'rish
Klipbordga nusxa olish
\sqrt{y+1}=3-\sqrt{2y-5}
Tenglamaning ikkala tarafidan \sqrt{2y-5} ni ayirish.
\left(\sqrt{y+1}\right)^{2}=\left(3-\sqrt{2y-5}\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
y+1=\left(3-\sqrt{2y-5}\right)^{2}
2 daraja ko‘rsatkichini \sqrt{y+1} ga hisoblang va y+1 ni qiymatni oling.
y+1=9-6\sqrt{2y-5}+\left(\sqrt{2y-5}\right)^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(3-\sqrt{2y-5}\right)^{2} kengaytirilishi uchun ishlating.
y+1=9-6\sqrt{2y-5}+2y-5
2 daraja ko‘rsatkichini \sqrt{2y-5} ga hisoblang va 2y-5 ni qiymatni oling.
y+1=4-6\sqrt{2y-5}+2y
4 olish uchun 9 dan 5 ni ayirish.
y+1-\left(4+2y\right)=-6\sqrt{2y-5}
Tenglamaning ikkala tarafidan 4+2y ni ayirish.
y+1-4-2y=-6\sqrt{2y-5}
4+2y teskarisini topish uchun har birining teskarisini toping.
y-3-2y=-6\sqrt{2y-5}
-3 olish uchun 1 dan 4 ni ayirish.
-y-3=-6\sqrt{2y-5}
-y ni olish uchun y va -2y ni birlashtirish.
\left(-y-3\right)^{2}=\left(-6\sqrt{2y-5}\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
y^{2}+6y+9=\left(-6\sqrt{2y-5}\right)^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(-y-3\right)^{2} kengaytirilishi uchun ishlating.
y^{2}+6y+9=\left(-6\right)^{2}\left(\sqrt{2y-5}\right)^{2}
\left(-6\sqrt{2y-5}\right)^{2} ni kengaytirish.
y^{2}+6y+9=36\left(\sqrt{2y-5}\right)^{2}
2 daraja ko‘rsatkichini -6 ga hisoblang va 36 ni qiymatni oling.
y^{2}+6y+9=36\left(2y-5\right)
2 daraja ko‘rsatkichini \sqrt{2y-5} ga hisoblang va 2y-5 ni qiymatni oling.
y^{2}+6y+9=72y-180
36 ga 2y-5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
y^{2}+6y+9-72y=-180
Ikkala tarafdan 72y ni ayirish.
y^{2}-66y+9=-180
-66y ni olish uchun 6y va -72y ni birlashtirish.
y^{2}-66y+9+180=0
180 ni ikki tarafga qo’shing.
y^{2}-66y+189=0
189 olish uchun 9 va 180'ni qo'shing.
a+b=-66 ab=189
Bu tenglamani yechish uchun y^{2}+\left(a+b\right)y+ab=\left(y+a\right)\left(y+b\right) formulasi yordamida y^{2}-66y+189 ni faktorlang. a va b ni topish uchun yechiladigan tizimni sozlang.
-1,-189 -3,-63 -7,-27 -9,-21
ab musbat boʻlganda, a va b da bir xil belgi bor. a+b manfiy boʻlganda, a va b ikkisi ham manfiy. 189-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
-1-189=-190 -3-63=-66 -7-27=-34 -9-21=-30
Har bir juftlik yigʻindisini hisoblang.
a=-63 b=-3
Yechim – -66 yigʻindisini beruvchi juftlik.
\left(y-63\right)\left(y-3\right)
Faktorlangan \left(y+a\right)\left(y+b\right) ifodani olingan qiymatlar bilan qaytadan yozing.
y=63 y=3
Tenglamani yechish uchun y-63=0 va y-3=0 ni yeching.
\sqrt{63+1}+\sqrt{2\times 63-5}=3
\sqrt{y+1}+\sqrt{2y-5}=3 tenglamasida y uchun 63 ni almashtiring.
19=3
Qisqartirish. y=63 qiymati bu tenglamani qoniqtirmaydi.
\sqrt{3+1}+\sqrt{2\times 3-5}=3
\sqrt{y+1}+\sqrt{2y-5}=3 tenglamasida y uchun 3 ni almashtiring.
3=3
Qisqartirish. y=3 tenglamani qoniqtiradi.
y=3
\sqrt{y+1}=-\sqrt{2y-5}+3 tenglamasi noyob yechimga ega.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}