x uchun yechish
x=14
x=6
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(\sqrt{x-5}\right)^{2}=\left(\sqrt{3x+7}-4\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
x-5=\left(\sqrt{3x+7}-4\right)^{2}
2 daraja ko‘rsatkichini \sqrt{x-5} ga hisoblang va x-5 ni qiymatni oling.
x-5=\left(\sqrt{3x+7}\right)^{2}-8\sqrt{3x+7}+16
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(\sqrt{3x+7}-4\right)^{2} kengaytirilishi uchun ishlating.
x-5=3x+7-8\sqrt{3x+7}+16
2 daraja ko‘rsatkichini \sqrt{3x+7} ga hisoblang va 3x+7 ni qiymatni oling.
x-5=3x+23-8\sqrt{3x+7}
23 olish uchun 7 va 16'ni qo'shing.
x-5-\left(3x+23\right)=-8\sqrt{3x+7}
Tenglamaning ikkala tarafidan 3x+23 ni ayirish.
x-5-3x-23=-8\sqrt{3x+7}
3x+23 teskarisini topish uchun har birining teskarisini toping.
-2x-5-23=-8\sqrt{3x+7}
-2x ni olish uchun x va -3x ni birlashtirish.
-2x-28=-8\sqrt{3x+7}
-28 olish uchun -5 dan 23 ni ayirish.
\left(-2x-28\right)^{2}=\left(-8\sqrt{3x+7}\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
4x^{2}+112x+784=\left(-8\sqrt{3x+7}\right)^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(-2x-28\right)^{2} kengaytirilishi uchun ishlating.
4x^{2}+112x+784=\left(-8\right)^{2}\left(\sqrt{3x+7}\right)^{2}
\left(-8\sqrt{3x+7}\right)^{2} ni kengaytirish.
4x^{2}+112x+784=64\left(\sqrt{3x+7}\right)^{2}
2 daraja ko‘rsatkichini -8 ga hisoblang va 64 ni qiymatni oling.
4x^{2}+112x+784=64\left(3x+7\right)
2 daraja ko‘rsatkichini \sqrt{3x+7} ga hisoblang va 3x+7 ni qiymatni oling.
4x^{2}+112x+784=192x+448
64 ga 3x+7 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4x^{2}+112x+784-192x=448
Ikkala tarafdan 192x ni ayirish.
4x^{2}-80x+784=448
-80x ni olish uchun 112x va -192x ni birlashtirish.
4x^{2}-80x+784-448=0
Ikkala tarafdan 448 ni ayirish.
4x^{2}-80x+336=0
336 olish uchun 784 dan 448 ni ayirish.
x=\frac{-\left(-80\right)±\sqrt{\left(-80\right)^{2}-4\times 4\times 336}}{2\times 4}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 4 ni a, -80 ni b va 336 ni c bilan almashtiring.
x=\frac{-\left(-80\right)±\sqrt{6400-4\times 4\times 336}}{2\times 4}
-80 kvadratini chiqarish.
x=\frac{-\left(-80\right)±\sqrt{6400-16\times 336}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
x=\frac{-\left(-80\right)±\sqrt{6400-5376}}{2\times 4}
-16 ni 336 marotabaga ko'paytirish.
x=\frac{-\left(-80\right)±\sqrt{1024}}{2\times 4}
6400 ni -5376 ga qo'shish.
x=\frac{-\left(-80\right)±32}{2\times 4}
1024 ning kvadrat ildizini chiqarish.
x=\frac{80±32}{2\times 4}
-80 ning teskarisi 80 ga teng.
x=\frac{80±32}{8}
2 ni 4 marotabaga ko'paytirish.
x=\frac{112}{8}
x=\frac{80±32}{8} tenglamasini yeching, bunda ± musbat. 80 ni 32 ga qo'shish.
x=14
112 ni 8 ga bo'lish.
x=\frac{48}{8}
x=\frac{80±32}{8} tenglamasini yeching, bunda ± manfiy. 80 dan 32 ni ayirish.
x=6
48 ni 8 ga bo'lish.
x=14 x=6
Tenglama yechildi.
\sqrt{14-5}=\sqrt{3\times 14+7}-4
\sqrt{x-5}=\sqrt{3x+7}-4 tenglamasida x uchun 14 ni almashtiring.
3=3
Qisqartirish. x=14 tenglamani qoniqtiradi.
\sqrt{6-5}=\sqrt{3\times 6+7}-4
\sqrt{x-5}=\sqrt{3x+7}-4 tenglamasida x uchun 6 ni almashtiring.
1=1
Qisqartirish. x=6 tenglamani qoniqtiradi.
x=14 x=6
\sqrt{x-5}=\sqrt{3x+7}-4 boʻyicha barcha yechimlar roʻyxati.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}