x uchun yechish
x=3
Grafik
Baham ko'rish
Klipbordga nusxa olish
\sqrt{x-3}=2-\sqrt{2x-2}
Tenglamaning ikkala tarafidan \sqrt{2x-2} ni ayirish.
\left(\sqrt{x-3}\right)^{2}=\left(2-\sqrt{2x-2}\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
x-3=\left(2-\sqrt{2x-2}\right)^{2}
2 daraja ko‘rsatkichini \sqrt{x-3} ga hisoblang va x-3 ni qiymatni oling.
x-3=4-4\sqrt{2x-2}+\left(\sqrt{2x-2}\right)^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(2-\sqrt{2x-2}\right)^{2} kengaytirilishi uchun ishlating.
x-3=4-4\sqrt{2x-2}+2x-2
2 daraja ko‘rsatkichini \sqrt{2x-2} ga hisoblang va 2x-2 ni qiymatni oling.
x-3=2-4\sqrt{2x-2}+2x
2 olish uchun 4 dan 2 ni ayirish.
x-3-\left(2+2x\right)=-4\sqrt{2x-2}
Tenglamaning ikkala tarafidan 2+2x ni ayirish.
x-3-2-2x=-4\sqrt{2x-2}
2+2x teskarisini topish uchun har birining teskarisini toping.
x-5-2x=-4\sqrt{2x-2}
-5 olish uchun -3 dan 2 ni ayirish.
-x-5=-4\sqrt{2x-2}
-x ni olish uchun x va -2x ni birlashtirish.
\left(-x-5\right)^{2}=\left(-4\sqrt{2x-2}\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
x^{2}+10x+25=\left(-4\sqrt{2x-2}\right)^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(-x-5\right)^{2} kengaytirilishi uchun ishlating.
x^{2}+10x+25=\left(-4\right)^{2}\left(\sqrt{2x-2}\right)^{2}
\left(-4\sqrt{2x-2}\right)^{2} ni kengaytirish.
x^{2}+10x+25=16\left(\sqrt{2x-2}\right)^{2}
2 daraja ko‘rsatkichini -4 ga hisoblang va 16 ni qiymatni oling.
x^{2}+10x+25=16\left(2x-2\right)
2 daraja ko‘rsatkichini \sqrt{2x-2} ga hisoblang va 2x-2 ni qiymatni oling.
x^{2}+10x+25=32x-32
16 ga 2x-2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}+10x+25-32x=-32
Ikkala tarafdan 32x ni ayirish.
x^{2}-22x+25=-32
-22x ni olish uchun 10x va -32x ni birlashtirish.
x^{2}-22x+25+32=0
32 ni ikki tarafga qo’shing.
x^{2}-22x+57=0
57 olish uchun 25 va 32'ni qo'shing.
a+b=-22 ab=57
Bu tenglamani yechish uchun x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) formulasi yordamida x^{2}-22x+57 ni faktorlang. a va b ni topish uchun yechiladigan tizimni sozlang.
-1,-57 -3,-19
ab musbat boʻlganda, a va b da bir xil belgi bor. a+b manfiy boʻlganda, a va b ikkisi ham manfiy. 57-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
-1-57=-58 -3-19=-22
Har bir juftlik yigʻindisini hisoblang.
a=-19 b=-3
Yechim – -22 yigʻindisini beruvchi juftlik.
\left(x-19\right)\left(x-3\right)
Faktorlangan \left(x+a\right)\left(x+b\right) ifodani olingan qiymatlar bilan qaytadan yozing.
x=19 x=3
Tenglamani yechish uchun x-19=0 va x-3=0 ni yeching.
\sqrt{19-3}+\sqrt{2\times 19-2}=2
\sqrt{x-3}+\sqrt{2x-2}=2 tenglamasida x uchun 19 ni almashtiring.
10=2
Qisqartirish. x=19 qiymati bu tenglamani qoniqtirmaydi.
\sqrt{3-3}+\sqrt{2\times 3-2}=2
\sqrt{x-3}+\sqrt{2x-2}=2 tenglamasida x uchun 3 ni almashtiring.
2=2
Qisqartirish. x=3 tenglamani qoniqtiradi.
x=3
\sqrt{x-3}=-\sqrt{2x-2}+2 tenglamasi noyob yechimga ega.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}