x uchun yechish (complex solution)
x=\frac{-16\sqrt{2}i-19}{9}\approx -2,111111111-2,514157444i
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(\sqrt{x-1}-2\right)^{2}=\left(2\sqrt{x+3}\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
\left(\sqrt{x-1}\right)^{2}-4\sqrt{x-1}+4=\left(2\sqrt{x+3}\right)^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(\sqrt{x-1}-2\right)^{2} kengaytirilishi uchun ishlating.
x-1-4\sqrt{x-1}+4=\left(2\sqrt{x+3}\right)^{2}
2 daraja ko‘rsatkichini \sqrt{x-1} ga hisoblang va x-1 ni qiymatni oling.
x+3-4\sqrt{x-1}=\left(2\sqrt{x+3}\right)^{2}
3 olish uchun -1 va 4'ni qo'shing.
x+3-4\sqrt{x-1}=2^{2}\left(\sqrt{x+3}\right)^{2}
\left(2\sqrt{x+3}\right)^{2} ni kengaytirish.
x+3-4\sqrt{x-1}=4\left(\sqrt{x+3}\right)^{2}
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
x+3-4\sqrt{x-1}=4\left(x+3\right)
2 daraja ko‘rsatkichini \sqrt{x+3} ga hisoblang va x+3 ni qiymatni oling.
x+3-4\sqrt{x-1}=4x+12
4 ga x+3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-4\sqrt{x-1}=4x+12-\left(x+3\right)
Tenglamaning ikkala tarafidan x+3 ni ayirish.
-4\sqrt{x-1}=4x+12-x-3
x+3 teskarisini topish uchun har birining teskarisini toping.
-4\sqrt{x-1}=3x+12-3
3x ni olish uchun 4x va -x ni birlashtirish.
-4\sqrt{x-1}=3x+9
9 olish uchun 12 dan 3 ni ayirish.
\left(-4\sqrt{x-1}\right)^{2}=\left(3x+9\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
\left(-4\right)^{2}\left(\sqrt{x-1}\right)^{2}=\left(3x+9\right)^{2}
\left(-4\sqrt{x-1}\right)^{2} ni kengaytirish.
16\left(\sqrt{x-1}\right)^{2}=\left(3x+9\right)^{2}
2 daraja ko‘rsatkichini -4 ga hisoblang va 16 ni qiymatni oling.
16\left(x-1\right)=\left(3x+9\right)^{2}
2 daraja ko‘rsatkichini \sqrt{x-1} ga hisoblang va x-1 ni qiymatni oling.
16x-16=\left(3x+9\right)^{2}
16 ga x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
16x-16=9x^{2}+54x+81
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(3x+9\right)^{2} kengaytirilishi uchun ishlating.
16x-16-9x^{2}=54x+81
Ikkala tarafdan 9x^{2} ni ayirish.
16x-16-9x^{2}-54x=81
Ikkala tarafdan 54x ni ayirish.
-38x-16-9x^{2}=81
-38x ni olish uchun 16x va -54x ni birlashtirish.
-38x-16-9x^{2}-81=0
Ikkala tarafdan 81 ni ayirish.
-38x-97-9x^{2}=0
-97 olish uchun -16 dan 81 ni ayirish.
-9x^{2}-38x-97=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-38\right)±\sqrt{\left(-38\right)^{2}-4\left(-9\right)\left(-97\right)}}{2\left(-9\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -9 ni a, -38 ni b va -97 ni c bilan almashtiring.
x=\frac{-\left(-38\right)±\sqrt{1444-4\left(-9\right)\left(-97\right)}}{2\left(-9\right)}
-38 kvadratini chiqarish.
x=\frac{-\left(-38\right)±\sqrt{1444+36\left(-97\right)}}{2\left(-9\right)}
-4 ni -9 marotabaga ko'paytirish.
x=\frac{-\left(-38\right)±\sqrt{1444-3492}}{2\left(-9\right)}
36 ni -97 marotabaga ko'paytirish.
x=\frac{-\left(-38\right)±\sqrt{-2048}}{2\left(-9\right)}
1444 ni -3492 ga qo'shish.
x=\frac{-\left(-38\right)±32\sqrt{2}i}{2\left(-9\right)}
-2048 ning kvadrat ildizini chiqarish.
x=\frac{38±32\sqrt{2}i}{2\left(-9\right)}
-38 ning teskarisi 38 ga teng.
x=\frac{38±32\sqrt{2}i}{-18}
2 ni -9 marotabaga ko'paytirish.
x=\frac{38+32\sqrt{2}i}{-18}
x=\frac{38±32\sqrt{2}i}{-18} tenglamasini yeching, bunda ± musbat. 38 ni 32i\sqrt{2} ga qo'shish.
x=\frac{-16\sqrt{2}i-19}{9}
38+32i\sqrt{2} ni -18 ga bo'lish.
x=\frac{-32\sqrt{2}i+38}{-18}
x=\frac{38±32\sqrt{2}i}{-18} tenglamasini yeching, bunda ± manfiy. 38 dan 32i\sqrt{2} ni ayirish.
x=\frac{-19+16\sqrt{2}i}{9}
38-32i\sqrt{2} ni -18 ga bo'lish.
x=\frac{-16\sqrt{2}i-19}{9} x=\frac{-19+16\sqrt{2}i}{9}
Tenglama yechildi.
\sqrt{\frac{-16\sqrt{2}i-19}{9}-1}-2=2\sqrt{\frac{-16\sqrt{2}i-19}{9}+3}
\sqrt{x-1}-2=2\sqrt{x+3} tenglamasida x uchun \frac{-16\sqrt{2}i-19}{9} ni almashtiring.
-\frac{8}{3}+\frac{4}{3}i\times 2^{\frac{1}{2}}=-\frac{8}{3}+\frac{4}{3}i\times 2^{\frac{1}{2}}
Qisqartirish. x=\frac{-16\sqrt{2}i-19}{9} tenglamani qoniqtiradi.
\sqrt{\frac{-19+16\sqrt{2}i}{9}-1}-2=2\sqrt{\frac{-19+16\sqrt{2}i}{9}+3}
\sqrt{x-1}-2=2\sqrt{x+3} tenglamasida x uchun \frac{-19+16\sqrt{2}i}{9} ni almashtiring.
-\frac{4}{3}+\frac{4}{3}i\times 2^{\frac{1}{2}}=\frac{8}{3}+\frac{4}{3}i\times 2^{\frac{1}{2}}
Qisqartirish. x=\frac{-19+16\sqrt{2}i}{9} qiymati bu tenglamani qoniqtirmaydi.
\sqrt{\frac{-16\sqrt{2}i-19}{9}-1}-2=2\sqrt{\frac{-16\sqrt{2}i-19}{9}+3}
\sqrt{x-1}-2=2\sqrt{x+3} tenglamasida x uchun \frac{-16\sqrt{2}i-19}{9} ni almashtiring.
-\frac{8}{3}+\frac{4}{3}i\times 2^{\frac{1}{2}}=-\frac{8}{3}+\frac{4}{3}i\times 2^{\frac{1}{2}}
Qisqartirish. x=\frac{-16\sqrt{2}i-19}{9} tenglamani qoniqtiradi.
x=\frac{-16\sqrt{2}i-19}{9}
\sqrt{x-1}-2=2\sqrt{x+3} tenglamasi noyob yechimga ega.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}