Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\sqrt{x}=2-2x
Tenglamaning ikkala tarafidan 2x ni ayirish.
\left(\sqrt{x}\right)^{2}=\left(2-2x\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
x=\left(2-2x\right)^{2}
2 daraja ko‘rsatkichini \sqrt{x} ga hisoblang va x ni qiymatni oling.
x=4-8x+4x^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(2-2x\right)^{2} kengaytirilishi uchun ishlating.
x-4=-8x+4x^{2}
Ikkala tarafdan 4 ni ayirish.
x-4+8x=4x^{2}
8x ni ikki tarafga qo’shing.
9x-4=4x^{2}
9x ni olish uchun x va 8x ni birlashtirish.
9x-4-4x^{2}=0
Ikkala tarafdan 4x^{2} ni ayirish.
-4x^{2}+9x-4=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-9±\sqrt{9^{2}-4\left(-4\right)\left(-4\right)}}{2\left(-4\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -4 ni a, 9 ni b va -4 ni c bilan almashtiring.
x=\frac{-9±\sqrt{81-4\left(-4\right)\left(-4\right)}}{2\left(-4\right)}
9 kvadratini chiqarish.
x=\frac{-9±\sqrt{81+16\left(-4\right)}}{2\left(-4\right)}
-4 ni -4 marotabaga ko'paytirish.
x=\frac{-9±\sqrt{81-64}}{2\left(-4\right)}
16 ni -4 marotabaga ko'paytirish.
x=\frac{-9±\sqrt{17}}{2\left(-4\right)}
81 ni -64 ga qo'shish.
x=\frac{-9±\sqrt{17}}{-8}
2 ni -4 marotabaga ko'paytirish.
x=\frac{\sqrt{17}-9}{-8}
x=\frac{-9±\sqrt{17}}{-8} tenglamasini yeching, bunda ± musbat. -9 ni \sqrt{17} ga qo'shish.
x=\frac{9-\sqrt{17}}{8}
-9+\sqrt{17} ni -8 ga bo'lish.
x=\frac{-\sqrt{17}-9}{-8}
x=\frac{-9±\sqrt{17}}{-8} tenglamasini yeching, bunda ± manfiy. -9 dan \sqrt{17} ni ayirish.
x=\frac{\sqrt{17}+9}{8}
-9-\sqrt{17} ni -8 ga bo'lish.
x=\frac{9-\sqrt{17}}{8} x=\frac{\sqrt{17}+9}{8}
Tenglama yechildi.
\sqrt{\frac{9-\sqrt{17}}{8}}+2\times \frac{9-\sqrt{17}}{8}=2
\sqrt{x}+2x=2 tenglamasida x uchun \frac{9-\sqrt{17}}{8} ni almashtiring.
2=2
Qisqartirish. x=\frac{9-\sqrt{17}}{8} tenglamani qoniqtiradi.
\sqrt{\frac{\sqrt{17}+9}{8}}+2\times \frac{\sqrt{17}+9}{8}=2
\sqrt{x}+2x=2 tenglamasida x uchun \frac{\sqrt{17}+9}{8} ni almashtiring.
\frac{5}{2}+\frac{1}{2}\times 17^{\frac{1}{2}}=2
Qisqartirish. x=\frac{\sqrt{17}+9}{8} qiymati bu tenglamani qoniqtirmaydi.
x=\frac{9-\sqrt{17}}{8}
\sqrt{x}=2-2x tenglamasi noyob yechimga ega.