x uchun yechish
x = \frac{19881}{289} = 68\frac{229}{289} \approx 68,792387543
Grafik
Baham ko'rish
Klipbordga nusxa olish
\sqrt{x}=17-\sqrt{x+7}
Tenglamaning ikkala tarafidan \sqrt{x+7} ni ayirish.
\left(\sqrt{x}\right)^{2}=\left(17-\sqrt{x+7}\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
x=\left(17-\sqrt{x+7}\right)^{2}
2 daraja ko‘rsatkichini \sqrt{x} ga hisoblang va x ni qiymatni oling.
x=289-34\sqrt{x+7}+\left(\sqrt{x+7}\right)^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(17-\sqrt{x+7}\right)^{2} kengaytirilishi uchun ishlating.
x=289-34\sqrt{x+7}+x+7
2 daraja ko‘rsatkichini \sqrt{x+7} ga hisoblang va x+7 ni qiymatni oling.
x=296-34\sqrt{x+7}+x
296 olish uchun 289 va 7'ni qo'shing.
x+34\sqrt{x+7}=296+x
34\sqrt{x+7} ni ikki tarafga qo’shing.
x+34\sqrt{x+7}-x=296
Ikkala tarafdan x ni ayirish.
34\sqrt{x+7}=296
0 ni olish uchun x va -x ni birlashtirish.
\sqrt{x+7}=\frac{296}{34}
Ikki tarafini 34 ga bo‘ling.
\sqrt{x+7}=\frac{148}{17}
\frac{296}{34} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x+7=\frac{21904}{289}
Tenglamaning ikkala taraf kvadratini chiqarish.
x+7-7=\frac{21904}{289}-7
Tenglamaning ikkala tarafidan 7 ni ayirish.
x=\frac{21904}{289}-7
O‘zidan 7 ayirilsa 0 qoladi.
x=\frac{19881}{289}
\frac{21904}{289} dan 7 ni ayirish.
\sqrt{\frac{19881}{289}}+\sqrt{\frac{19881}{289}+7}=17
\sqrt{x}+\sqrt{x+7}=17 tenglamasida x uchun \frac{19881}{289} ni almashtiring.
17=17
Qisqartirish. x=\frac{19881}{289} tenglamani qoniqtiradi.
x=\frac{19881}{289}
\sqrt{x}=-\sqrt{x+7}+17 tenglamasi noyob yechimga ega.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}