Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(\sqrt{x^{2}-1}\right)^{2}=\left(\sqrt{2x+1}\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
x^{2}-1=\left(\sqrt{2x+1}\right)^{2}
2 daraja ko‘rsatkichini \sqrt{x^{2}-1} ga hisoblang va x^{2}-1 ni qiymatni oling.
x^{2}-1=2x+1
2 daraja ko‘rsatkichini \sqrt{2x+1} ga hisoblang va 2x+1 ni qiymatni oling.
x^{2}-1-2x=1
Ikkala tarafdan 2x ni ayirish.
x^{2}-1-2x-1=0
Ikkala tarafdan 1 ni ayirish.
x^{2}-2-2x=0
-2 olish uchun -1 dan 1 ni ayirish.
x^{2}-2x-2=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-2\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -2 ni b va -2 ni c bilan almashtiring.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-2\right)}}{2}
-2 kvadratini chiqarish.
x=\frac{-\left(-2\right)±\sqrt{4+8}}{2}
-4 ni -2 marotabaga ko'paytirish.
x=\frac{-\left(-2\right)±\sqrt{12}}{2}
4 ni 8 ga qo'shish.
x=\frac{-\left(-2\right)±2\sqrt{3}}{2}
12 ning kvadrat ildizini chiqarish.
x=\frac{2±2\sqrt{3}}{2}
-2 ning teskarisi 2 ga teng.
x=\frac{2\sqrt{3}+2}{2}
x=\frac{2±2\sqrt{3}}{2} tenglamasini yeching, bunda ± musbat. 2 ni 2\sqrt{3} ga qo'shish.
x=\sqrt{3}+1
2+2\sqrt{3} ni 2 ga bo'lish.
x=\frac{2-2\sqrt{3}}{2}
x=\frac{2±2\sqrt{3}}{2} tenglamasini yeching, bunda ± manfiy. 2 dan 2\sqrt{3} ni ayirish.
x=1-\sqrt{3}
2-2\sqrt{3} ni 2 ga bo'lish.
x=\sqrt{3}+1 x=1-\sqrt{3}
Tenglama yechildi.
\sqrt{\left(\sqrt{3}+1\right)^{2}-1}=\sqrt{2\left(\sqrt{3}+1\right)+1}
\sqrt{x^{2}-1}=\sqrt{2x+1} tenglamasida x uchun \sqrt{3}+1 ni almashtiring.
\left(3+2\times 3^{\frac{1}{2}}\right)^{\frac{1}{2}}=\left(2\times 3^{\frac{1}{2}}+3\right)^{\frac{1}{2}}
Qisqartirish. x=\sqrt{3}+1 tenglamani qoniqtiradi.
\sqrt{\left(1-\sqrt{3}\right)^{2}-1}=\sqrt{2\left(1-\sqrt{3}\right)+1}
\sqrt{x^{2}-1}=\sqrt{2x+1} tenglamasida x uchun 1-\sqrt{3} ni almashtiring.
i\left(-\left(3-2\times 3^{\frac{1}{2}}\right)\right)^{\frac{1}{2}}=i\left(-\left(3-2\times 3^{\frac{1}{2}}\right)\right)^{\frac{1}{2}}
Qisqartirish. x=1-\sqrt{3} tenglamani qoniqtiradi.
x=\sqrt{3}+1 x=1-\sqrt{3}
\sqrt{x^{2}-1}=\sqrt{2x+1} boʻyicha barcha yechimlar roʻyxati.
\left(\sqrt{x^{2}-1}\right)^{2}=\left(\sqrt{2x+1}\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
x^{2}-1=\left(\sqrt{2x+1}\right)^{2}
2 daraja ko‘rsatkichini \sqrt{x^{2}-1} ga hisoblang va x^{2}-1 ni qiymatni oling.
x^{2}-1=2x+1
2 daraja ko‘rsatkichini \sqrt{2x+1} ga hisoblang va 2x+1 ni qiymatni oling.
x^{2}-1-2x=1
Ikkala tarafdan 2x ni ayirish.
x^{2}-1-2x-1=0
Ikkala tarafdan 1 ni ayirish.
x^{2}-2-2x=0
-2 olish uchun -1 dan 1 ni ayirish.
x^{2}-2x-2=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-2\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -2 ni b va -2 ni c bilan almashtiring.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-2\right)}}{2}
-2 kvadratini chiqarish.
x=\frac{-\left(-2\right)±\sqrt{4+8}}{2}
-4 ni -2 marotabaga ko'paytirish.
x=\frac{-\left(-2\right)±\sqrt{12}}{2}
4 ni 8 ga qo'shish.
x=\frac{-\left(-2\right)±2\sqrt{3}}{2}
12 ning kvadrat ildizini chiqarish.
x=\frac{2±2\sqrt{3}}{2}
-2 ning teskarisi 2 ga teng.
x=\frac{2\sqrt{3}+2}{2}
x=\frac{2±2\sqrt{3}}{2} tenglamasini yeching, bunda ± musbat. 2 ni 2\sqrt{3} ga qo'shish.
x=\sqrt{3}+1
2+2\sqrt{3} ni 2 ga bo'lish.
x=\frac{2-2\sqrt{3}}{2}
x=\frac{2±2\sqrt{3}}{2} tenglamasini yeching, bunda ± manfiy. 2 dan 2\sqrt{3} ni ayirish.
x=1-\sqrt{3}
2-2\sqrt{3} ni 2 ga bo'lish.
x=\sqrt{3}+1 x=1-\sqrt{3}
Tenglama yechildi.
\sqrt{\left(\sqrt{3}+1\right)^{2}-1}=\sqrt{2\left(\sqrt{3}+1\right)+1}
\sqrt{x^{2}-1}=\sqrt{2x+1} tenglamasida x uchun \sqrt{3}+1 ni almashtiring.
\left(3+2\times 3^{\frac{1}{2}}\right)^{\frac{1}{2}}=\left(2\times 3^{\frac{1}{2}}+3\right)^{\frac{1}{2}}
Qisqartirish. x=\sqrt{3}+1 tenglamani qoniqtiradi.
\sqrt{\left(1-\sqrt{3}\right)^{2}-1}=\sqrt{2\left(1-\sqrt{3}\right)+1}
\sqrt{x^{2}-1}=\sqrt{2x+1} tenglamasida x uchun 1-\sqrt{3} ni almashtiring. \sqrt{\left(1-\sqrt{3}\right)^{2}-1} ifodasi noaniq, chunki ildiz ostidagi qiymat manfiy boʻlishi mumkin emas.
x=\sqrt{3}+1
\sqrt{x^{2}-1}=\sqrt{2x+1} tenglamasi noyob yechimga ega.