x uchun yechish
x = \frac{\sqrt{554} + 27}{42} \approx 1,203266776
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(\sqrt{x+7}+\sqrt{x+2}\right)^{2}=\left(\sqrt{18x}\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
\left(\sqrt{x+7}\right)^{2}+2\sqrt{x+7}\sqrt{x+2}+\left(\sqrt{x+2}\right)^{2}=\left(\sqrt{18x}\right)^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(\sqrt{x+7}+\sqrt{x+2}\right)^{2} kengaytirilishi uchun ishlating.
x+7+2\sqrt{x+7}\sqrt{x+2}+\left(\sqrt{x+2}\right)^{2}=\left(\sqrt{18x}\right)^{2}
2 daraja ko‘rsatkichini \sqrt{x+7} ga hisoblang va x+7 ni qiymatni oling.
x+7+2\sqrt{x+7}\sqrt{x+2}+x+2=\left(\sqrt{18x}\right)^{2}
2 daraja ko‘rsatkichini \sqrt{x+2} ga hisoblang va x+2 ni qiymatni oling.
2x+7+2\sqrt{x+7}\sqrt{x+2}+2=\left(\sqrt{18x}\right)^{2}
2x ni olish uchun x va x ni birlashtirish.
2x+9+2\sqrt{x+7}\sqrt{x+2}=\left(\sqrt{18x}\right)^{2}
9 olish uchun 7 va 2'ni qo'shing.
2x+9+2\sqrt{x+7}\sqrt{x+2}=18x
2 daraja ko‘rsatkichini \sqrt{18x} ga hisoblang va 18x ni qiymatni oling.
2\sqrt{x+7}\sqrt{x+2}=18x-\left(2x+9\right)
Tenglamaning ikkala tarafidan 2x+9 ni ayirish.
2\sqrt{x+7}\sqrt{x+2}=18x-2x-9
2x+9 teskarisini topish uchun har birining teskarisini toping.
2\sqrt{x+7}\sqrt{x+2}=16x-9
16x ni olish uchun 18x va -2x ni birlashtirish.
\left(2\sqrt{x+7}\sqrt{x+2}\right)^{2}=\left(16x-9\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
2^{2}\left(\sqrt{x+7}\right)^{2}\left(\sqrt{x+2}\right)^{2}=\left(16x-9\right)^{2}
\left(2\sqrt{x+7}\sqrt{x+2}\right)^{2} ni kengaytirish.
4\left(\sqrt{x+7}\right)^{2}\left(\sqrt{x+2}\right)^{2}=\left(16x-9\right)^{2}
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
4\left(x+7\right)\left(\sqrt{x+2}\right)^{2}=\left(16x-9\right)^{2}
2 daraja ko‘rsatkichini \sqrt{x+7} ga hisoblang va x+7 ni qiymatni oling.
4\left(x+7\right)\left(x+2\right)=\left(16x-9\right)^{2}
2 daraja ko‘rsatkichini \sqrt{x+2} ga hisoblang va x+2 ni qiymatni oling.
\left(4x+28\right)\left(x+2\right)=\left(16x-9\right)^{2}
4 ga x+7 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4x^{2}+8x+28x+56=\left(16x-9\right)^{2}
4x+28 ifodaning har bir elementini x+2 ifodaning har bir elementiga ko‘paytirish orqali taqsimot qonuni xususiyatlarini qo‘llash mumkin.
4x^{2}+36x+56=\left(16x-9\right)^{2}
36x ni olish uchun 8x va 28x ni birlashtirish.
4x^{2}+36x+56=256x^{2}-288x+81
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(16x-9\right)^{2} kengaytirilishi uchun ishlating.
4x^{2}+36x+56-256x^{2}=-288x+81
Ikkala tarafdan 256x^{2} ni ayirish.
-252x^{2}+36x+56=-288x+81
-252x^{2} ni olish uchun 4x^{2} va -256x^{2} ni birlashtirish.
-252x^{2}+36x+56+288x=81
288x ni ikki tarafga qo’shing.
-252x^{2}+324x+56=81
324x ni olish uchun 36x va 288x ni birlashtirish.
-252x^{2}+324x+56-81=0
Ikkala tarafdan 81 ni ayirish.
-252x^{2}+324x-25=0
-25 olish uchun 56 dan 81 ni ayirish.
x=\frac{-324±\sqrt{324^{2}-4\left(-252\right)\left(-25\right)}}{2\left(-252\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -252 ni a, 324 ni b va -25 ni c bilan almashtiring.
x=\frac{-324±\sqrt{104976-4\left(-252\right)\left(-25\right)}}{2\left(-252\right)}
324 kvadratini chiqarish.
x=\frac{-324±\sqrt{104976+1008\left(-25\right)}}{2\left(-252\right)}
-4 ni -252 marotabaga ko'paytirish.
x=\frac{-324±\sqrt{104976-25200}}{2\left(-252\right)}
1008 ni -25 marotabaga ko'paytirish.
x=\frac{-324±\sqrt{79776}}{2\left(-252\right)}
104976 ni -25200 ga qo'shish.
x=\frac{-324±12\sqrt{554}}{2\left(-252\right)}
79776 ning kvadrat ildizini chiqarish.
x=\frac{-324±12\sqrt{554}}{-504}
2 ni -252 marotabaga ko'paytirish.
x=\frac{12\sqrt{554}-324}{-504}
x=\frac{-324±12\sqrt{554}}{-504} tenglamasini yeching, bunda ± musbat. -324 ni 12\sqrt{554} ga qo'shish.
x=-\frac{\sqrt{554}}{42}+\frac{9}{14}
-324+12\sqrt{554} ni -504 ga bo'lish.
x=\frac{-12\sqrt{554}-324}{-504}
x=\frac{-324±12\sqrt{554}}{-504} tenglamasini yeching, bunda ± manfiy. -324 dan 12\sqrt{554} ni ayirish.
x=\frac{\sqrt{554}}{42}+\frac{9}{14}
-324-12\sqrt{554} ni -504 ga bo'lish.
x=-\frac{\sqrt{554}}{42}+\frac{9}{14} x=\frac{\sqrt{554}}{42}+\frac{9}{14}
Tenglama yechildi.
\sqrt{-\frac{\sqrt{554}}{42}+\frac{9}{14}+7}+\sqrt{-\frac{\sqrt{554}}{42}+\frac{9}{14}+2}=\sqrt{18\left(-\frac{\sqrt{554}}{42}+\frac{9}{14}\right)}
\sqrt{x+7}+\sqrt{x+2}=\sqrt{18x} tenglamasida x uchun -\frac{\sqrt{554}}{42}+\frac{9}{14} ni almashtiring.
\left(-\frac{1}{42}\times 554^{\frac{1}{2}}+\frac{107}{14}\right)^{\frac{1}{2}}+\left(-\frac{1}{42}\times 554^{\frac{1}{2}}+\frac{37}{14}\right)^{\frac{1}{2}}=\left(-\frac{3}{7}\times 554^{\frac{1}{2}}+\frac{81}{7}\right)^{\frac{1}{2}}
Qisqartirish. x=-\frac{\sqrt{554}}{42}+\frac{9}{14} qiymati bu tenglamani qoniqtirmaydi.
\sqrt{\frac{\sqrt{554}}{42}+\frac{9}{14}+7}+\sqrt{\frac{\sqrt{554}}{42}+\frac{9}{14}+2}=\sqrt{18\left(\frac{\sqrt{554}}{42}+\frac{9}{14}\right)}
\sqrt{x+7}+\sqrt{x+2}=\sqrt{18x} tenglamasida x uchun \frac{\sqrt{554}}{42}+\frac{9}{14} ni almashtiring.
\left(\frac{1}{42}\times 554^{\frac{1}{2}}+\frac{107}{14}\right)^{\frac{1}{2}}+\left(\frac{1}{42}\times 554^{\frac{1}{2}}+\frac{37}{14}\right)^{\frac{1}{2}}=\left(\frac{3}{7}\times 554^{\frac{1}{2}}+\frac{81}{7}\right)^{\frac{1}{2}}
Qisqartirish. x=\frac{\sqrt{554}}{42}+\frac{9}{14} tenglamani qoniqtiradi.
x=\frac{\sqrt{554}}{42}+\frac{9}{14}
\sqrt{x+2}+\sqrt{x+7}=\sqrt{18x} tenglamasi noyob yechimga ega.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}