Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\sqrt{x+6}=-\left(-\sqrt{5x+1}+1\right)
Tenglamaning ikkala tarafidan -\sqrt{5x+1}+1 ni ayirish.
\sqrt{x+6}=-\left(-\sqrt{5x+1}\right)-1
-\sqrt{5x+1}+1 teskarisini topish uchun har birining teskarisini toping.
\sqrt{x+6}=\sqrt{5x+1}-1
-\sqrt{5x+1} ning teskarisi \sqrt{5x+1} ga teng.
\left(\sqrt{x+6}\right)^{2}=\left(\sqrt{5x+1}-1\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
x+6=\left(\sqrt{5x+1}-1\right)^{2}
2 daraja ko‘rsatkichini \sqrt{x+6} ga hisoblang va x+6 ni qiymatni oling.
x+6=\left(\sqrt{5x+1}\right)^{2}-2\sqrt{5x+1}+1
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(\sqrt{5x+1}-1\right)^{2} kengaytirilishi uchun ishlating.
x+6=5x+1-2\sqrt{5x+1}+1
2 daraja ko‘rsatkichini \sqrt{5x+1} ga hisoblang va 5x+1 ni qiymatni oling.
x+6=5x+2-2\sqrt{5x+1}
2 olish uchun 1 va 1'ni qo'shing.
x+6-\left(5x+2\right)=-2\sqrt{5x+1}
Tenglamaning ikkala tarafidan 5x+2 ni ayirish.
x+6-5x-2=-2\sqrt{5x+1}
5x+2 teskarisini topish uchun har birining teskarisini toping.
-4x+6-2=-2\sqrt{5x+1}
-4x ni olish uchun x va -5x ni birlashtirish.
-4x+4=-2\sqrt{5x+1}
4 olish uchun 6 dan 2 ni ayirish.
\left(-4x+4\right)^{2}=\left(-2\sqrt{5x+1}\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
16x^{2}-32x+16=\left(-2\sqrt{5x+1}\right)^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(-4x+4\right)^{2} kengaytirilishi uchun ishlating.
16x^{2}-32x+16=\left(-2\right)^{2}\left(\sqrt{5x+1}\right)^{2}
\left(-2\sqrt{5x+1}\right)^{2} ni kengaytirish.
16x^{2}-32x+16=4\left(\sqrt{5x+1}\right)^{2}
2 daraja ko‘rsatkichini -2 ga hisoblang va 4 ni qiymatni oling.
16x^{2}-32x+16=4\left(5x+1\right)
2 daraja ko‘rsatkichini \sqrt{5x+1} ga hisoblang va 5x+1 ni qiymatni oling.
16x^{2}-32x+16=20x+4
4 ga 5x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
16x^{2}-32x+16-20x=4
Ikkala tarafdan 20x ni ayirish.
16x^{2}-52x+16=4
-52x ni olish uchun -32x va -20x ni birlashtirish.
16x^{2}-52x+16-4=0
Ikkala tarafdan 4 ni ayirish.
16x^{2}-52x+12=0
12 olish uchun 16 dan 4 ni ayirish.
4x^{2}-13x+3=0
Ikki tarafini 4 ga bo‘ling.
a+b=-13 ab=4\times 3=12
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon 4x^{2}+ax+bx+3 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
-1,-12 -2,-6 -3,-4
ab musbat boʻlganda, a va b da bir xil belgi bor. a+b manfiy boʻlganda, a va b ikkisi ham manfiy. 12-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
-1-12=-13 -2-6=-8 -3-4=-7
Har bir juftlik yigʻindisini hisoblang.
a=-12 b=-1
Yechim – -13 yigʻindisini beruvchi juftlik.
\left(4x^{2}-12x\right)+\left(-x+3\right)
4x^{2}-13x+3 ni \left(4x^{2}-12x\right)+\left(-x+3\right) sifatida qaytadan yozish.
4x\left(x-3\right)-\left(x-3\right)
Birinchi guruhda 4x ni va ikkinchi guruhda -1 ni faktordan chiqaring.
\left(x-3\right)\left(4x-1\right)
Distributiv funktsiyasidan foydalangan holda x-3 umumiy terminini chiqaring.
x=3 x=\frac{1}{4}
Tenglamani yechish uchun x-3=0 va 4x-1=0 ni yeching.
\sqrt{3+6}-\sqrt{5\times 3+1}+1=0
\sqrt{x+6}-\sqrt{5x+1}+1=0 tenglamasida x uchun 3 ni almashtiring.
0=0
Qisqartirish. x=3 tenglamani qoniqtiradi.
\sqrt{\frac{1}{4}+6}-\sqrt{5\times \frac{1}{4}+1}+1=0
\sqrt{x+6}-\sqrt{5x+1}+1=0 tenglamasida x uchun \frac{1}{4} ni almashtiring.
2=0
Qisqartirish. x=\frac{1}{4} qiymati bu tenglamani qoniqtirmaydi.
\sqrt{3+6}-\sqrt{5\times 3+1}+1=0
\sqrt{x+6}-\sqrt{5x+1}+1=0 tenglamasida x uchun 3 ni almashtiring.
0=0
Qisqartirish. x=3 tenglamani qoniqtiradi.
x=3
\sqrt{x+6}=\sqrt{5x+1}-1 tenglamasi noyob yechimga ega.