Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\sqrt{x+5}=1-\sqrt{2x+8}
Tenglamaning ikkala tarafidan \sqrt{2x+8} ni ayirish.
\left(\sqrt{x+5}\right)^{2}=\left(1-\sqrt{2x+8}\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
x+5=\left(1-\sqrt{2x+8}\right)^{2}
2 daraja ko‘rsatkichini \sqrt{x+5} ga hisoblang va x+5 ni qiymatni oling.
x+5=1-2\sqrt{2x+8}+\left(\sqrt{2x+8}\right)^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(1-\sqrt{2x+8}\right)^{2} kengaytirilishi uchun ishlating.
x+5=1-2\sqrt{2x+8}+2x+8
2 daraja ko‘rsatkichini \sqrt{2x+8} ga hisoblang va 2x+8 ni qiymatni oling.
x+5=9-2\sqrt{2x+8}+2x
9 olish uchun 1 va 8'ni qo'shing.
x+5-\left(9+2x\right)=-2\sqrt{2x+8}
Tenglamaning ikkala tarafidan 9+2x ni ayirish.
x+5-9-2x=-2\sqrt{2x+8}
9+2x teskarisini topish uchun har birining teskarisini toping.
x-4-2x=-2\sqrt{2x+8}
-4 olish uchun 5 dan 9 ni ayirish.
-x-4=-2\sqrt{2x+8}
-x ni olish uchun x va -2x ni birlashtirish.
\left(-x-4\right)^{2}=\left(-2\sqrt{2x+8}\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
x^{2}+8x+16=\left(-2\sqrt{2x+8}\right)^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(-x-4\right)^{2} kengaytirilishi uchun ishlating.
x^{2}+8x+16=\left(-2\right)^{2}\left(\sqrt{2x+8}\right)^{2}
\left(-2\sqrt{2x+8}\right)^{2} ni kengaytirish.
x^{2}+8x+16=4\left(\sqrt{2x+8}\right)^{2}
2 daraja ko‘rsatkichini -2 ga hisoblang va 4 ni qiymatni oling.
x^{2}+8x+16=4\left(2x+8\right)
2 daraja ko‘rsatkichini \sqrt{2x+8} ga hisoblang va 2x+8 ni qiymatni oling.
x^{2}+8x+16=8x+32
4 ga 2x+8 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}+8x+16-8x=32
Ikkala tarafdan 8x ni ayirish.
x^{2}+16=32
0 ni olish uchun 8x va -8x ni birlashtirish.
x^{2}+16-32=0
Ikkala tarafdan 32 ni ayirish.
x^{2}-16=0
-16 olish uchun 16 dan 32 ni ayirish.
\left(x-4\right)\left(x+4\right)=0
Hisoblang: x^{2}-16. x^{2}-16 ni x^{2}-4^{2} sifatida qaytadan yozish. Kvadratlarning farqini ushbu formula bilan hisoblash mumkin: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=4 x=-4
Tenglamani yechish uchun x-4=0 va x+4=0 ni yeching.
\sqrt{4+5}+\sqrt{2\times 4+8}=1
\sqrt{x+5}+\sqrt{2x+8}=1 tenglamasida x uchun 4 ni almashtiring.
7=1
Qisqartirish. x=4 qiymati bu tenglamani qoniqtirmaydi.
\sqrt{-4+5}+\sqrt{2\left(-4\right)+8}=1
\sqrt{x+5}+\sqrt{2x+8}=1 tenglamasida x uchun -4 ni almashtiring.
1=1
Qisqartirish. x=-4 tenglamani qoniqtiradi.
x=-4
\sqrt{x+5}=-\sqrt{2x+8}+1 tenglamasi noyob yechimga ega.