Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\sqrt{x+2}=\sqrt{9}-\sqrt{x-1}
Tenglamaning ikkala tarafidan \sqrt{x-1} ni ayirish.
\sqrt{x+2}=3-\sqrt{x-1}
9 ning kvadrat ildizini hisoblab, 3 natijaga ega bo‘ling.
\left(\sqrt{x+2}\right)^{2}=\left(3-\sqrt{x-1}\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
x+2=\left(3-\sqrt{x-1}\right)^{2}
2 daraja ko‘rsatkichini \sqrt{x+2} ga hisoblang va x+2 ni qiymatni oling.
x+2=9-6\sqrt{x-1}+\left(\sqrt{x-1}\right)^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(3-\sqrt{x-1}\right)^{2} kengaytirilishi uchun ishlating.
x+2=9-6\sqrt{x-1}+x-1
2 daraja ko‘rsatkichini \sqrt{x-1} ga hisoblang va x-1 ni qiymatni oling.
x+2=8-6\sqrt{x-1}+x
8 olish uchun 9 dan 1 ni ayirish.
x+2+6\sqrt{x-1}=8+x
6\sqrt{x-1} ni ikki tarafga qo’shing.
x+2+6\sqrt{x-1}-x=8
Ikkala tarafdan x ni ayirish.
2+6\sqrt{x-1}=8
0 ni olish uchun x va -x ni birlashtirish.
6\sqrt{x-1}=8-2
Ikkala tarafdan 2 ni ayirish.
6\sqrt{x-1}=6
6 olish uchun 8 dan 2 ni ayirish.
\sqrt{x-1}=\frac{6}{6}
Ikki tarafini 6 ga bo‘ling.
\sqrt{x-1}=1
1 ni olish uchun 6 ni 6 ga bo‘ling.
x-1=1
Tenglamaning ikkala taraf kvadratini chiqarish.
x-1-\left(-1\right)=1-\left(-1\right)
1 ni tenglamaning ikkala tarafiga qo'shish.
x=1-\left(-1\right)
O‘zidan -1 ayirilsa 0 qoladi.
x=2
1 dan -1 ni ayirish.
\sqrt{2+2}+\sqrt{2-1}=\sqrt{9}
\sqrt{x+2}+\sqrt{x-1}=\sqrt{9} tenglamasida x uchun 2 ni almashtiring.
3=3
Qisqartirish. x=2 tenglamani qoniqtiradi.
x=2
\sqrt{x+2}=-\sqrt{x-1}+3 tenglamasi noyob yechimga ega.