x uchun yechish
x=7
Grafik
Baham ko'rish
Klipbordga nusxa olish
\sqrt{x+2}=7-\sqrt{x+9}
Tenglamaning ikkala tarafidan \sqrt{x+9} ni ayirish.
\left(\sqrt{x+2}\right)^{2}=\left(7-\sqrt{x+9}\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
x+2=\left(7-\sqrt{x+9}\right)^{2}
2 daraja ko‘rsatkichini \sqrt{x+2} ga hisoblang va x+2 ni qiymatni oling.
x+2=49-14\sqrt{x+9}+\left(\sqrt{x+9}\right)^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(7-\sqrt{x+9}\right)^{2} kengaytirilishi uchun ishlating.
x+2=49-14\sqrt{x+9}+x+9
2 daraja ko‘rsatkichini \sqrt{x+9} ga hisoblang va x+9 ni qiymatni oling.
x+2=58-14\sqrt{x+9}+x
58 olish uchun 49 va 9'ni qo'shing.
x+2+14\sqrt{x+9}=58+x
14\sqrt{x+9} ni ikki tarafga qo’shing.
x+2+14\sqrt{x+9}-x=58
Ikkala tarafdan x ni ayirish.
2+14\sqrt{x+9}=58
0 ni olish uchun x va -x ni birlashtirish.
14\sqrt{x+9}=58-2
Ikkala tarafdan 2 ni ayirish.
14\sqrt{x+9}=56
56 olish uchun 58 dan 2 ni ayirish.
\sqrt{x+9}=\frac{56}{14}
Ikki tarafini 14 ga bo‘ling.
\sqrt{x+9}=4
4 ni olish uchun 56 ni 14 ga bo‘ling.
x+9=16
Tenglamaning ikkala taraf kvadratini chiqarish.
x+9-9=16-9
Tenglamaning ikkala tarafidan 9 ni ayirish.
x=16-9
O‘zidan 9 ayirilsa 0 qoladi.
x=7
16 dan 9 ni ayirish.
\sqrt{7+2}+\sqrt{7+9}=7
\sqrt{x+2}+\sqrt{x+9}=7 tenglamasida x uchun 7 ni almashtiring.
7=7
Qisqartirish. x=7 tenglamani qoniqtiradi.
x=7
\sqrt{x+2}=-\sqrt{x+9}+7 tenglamasi noyob yechimga ega.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}