a uchun yechish (complex solution)
\left\{\begin{matrix}\\a=b\text{, }&\text{unconditionally}\\a\in \mathrm{C}\text{, }&b=0\text{ and }arg(a)<\pi \end{matrix}\right,
a uchun yechish
\left\{\begin{matrix}a=b\text{, }&b\neq 0\\a\geq 0\text{, }&b=0\end{matrix}\right,
b uchun yechish (complex solution)
\left\{\begin{matrix}\\b=a\text{, }&\text{unconditionally}\\b=0\text{, }&arg(a)<\pi \end{matrix}\right,
b uchun yechish
\left\{\begin{matrix}\\b=a\text{, }&\text{unconditionally}\\b=0\text{, }&a\geq 0\end{matrix}\right,
Baham ko'rish
Klipbordga nusxa olish
\left(\sqrt{a^{2}-b^{2}}\right)^{2}=\left(a-b\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
a^{2}-b^{2}=\left(a-b\right)^{2}
2 daraja ko‘rsatkichini \sqrt{a^{2}-b^{2}} ga hisoblang va a^{2}-b^{2} ni qiymatni oling.
a^{2}-b^{2}=a^{2}-2ab+b^{2}
\left(p-q\right)^{2}=p^{2}-2pq+q^{2} binom teoremasini \left(a-b\right)^{2} kengaytirilishi uchun ishlating.
a^{2}-b^{2}-a^{2}=-2ab+b^{2}
Ikkala tarafdan a^{2} ni ayirish.
-b^{2}=-2ab+b^{2}
0 ni olish uchun a^{2} va -a^{2} ni birlashtirish.
-2ab+b^{2}=-b^{2}
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
-2ab=-b^{2}-b^{2}
Ikkala tarafdan b^{2} ni ayirish.
-2ab=-2b^{2}
-2b^{2} ni olish uchun -b^{2} va -b^{2} ni birlashtirish.
ab=b^{2}
-2ni ikki tarafidan bekor qilish.
ba=b^{2}
Tenglama standart shaklda.
\frac{ba}{b}=\frac{b^{2}}{b}
Ikki tarafini b ga bo‘ling.
a=\frac{b^{2}}{b}
b ga bo'lish b ga ko'paytirishni bekor qiladi.
a=b
b^{2} ni b ga bo'lish.
\sqrt{b^{2}-b^{2}}=b-b
\sqrt{a^{2}-b^{2}}=a-b tenglamasida a uchun b ni almashtiring.
0=0
Qisqartirish. a=b tenglamani qoniqtiradi.
a=b
\sqrt{a^{2}-b^{2}}=a-b tenglamasi noyob yechimga ega.
\left(\sqrt{a^{2}-b^{2}}\right)^{2}=\left(a-b\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
a^{2}-b^{2}=\left(a-b\right)^{2}
2 daraja ko‘rsatkichini \sqrt{a^{2}-b^{2}} ga hisoblang va a^{2}-b^{2} ni qiymatni oling.
a^{2}-b^{2}=a^{2}-2ab+b^{2}
\left(p-q\right)^{2}=p^{2}-2pq+q^{2} binom teoremasini \left(a-b\right)^{2} kengaytirilishi uchun ishlating.
a^{2}-b^{2}-a^{2}=-2ab+b^{2}
Ikkala tarafdan a^{2} ni ayirish.
-b^{2}=-2ab+b^{2}
0 ni olish uchun a^{2} va -a^{2} ni birlashtirish.
-2ab+b^{2}=-b^{2}
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
-2ab=-b^{2}-b^{2}
Ikkala tarafdan b^{2} ni ayirish.
-2ab=-2b^{2}
-2b^{2} ni olish uchun -b^{2} va -b^{2} ni birlashtirish.
ab=b^{2}
-2ni ikki tarafidan bekor qilish.
ba=b^{2}
Tenglama standart shaklda.
\frac{ba}{b}=\frac{b^{2}}{b}
Ikki tarafini b ga bo‘ling.
a=\frac{b^{2}}{b}
b ga bo'lish b ga ko'paytirishni bekor qiladi.
a=b
b^{2} ni b ga bo'lish.
\sqrt{b^{2}-b^{2}}=b-b
\sqrt{a^{2}-b^{2}}=a-b tenglamasida a uchun b ni almashtiring.
0=0
Qisqartirish. a=b tenglamani qoniqtiradi.
a=b
\sqrt{a^{2}-b^{2}}=a-b tenglamasi noyob yechimga ega.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}