a uchun yechish
a=2\sqrt{5}e^{\arctan(\frac{\sqrt{55}}{5})i}\approx 2,5+3,708099244i
Baham ko'rish
Klipbordga nusxa olish
\left(\sqrt{a^{2}-4a+20}\right)^{2}=\left(\sqrt{a}\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
a^{2}-4a+20=\left(\sqrt{a}\right)^{2}
2 daraja ko‘rsatkichini \sqrt{a^{2}-4a+20} ga hisoblang va a^{2}-4a+20 ni qiymatni oling.
a^{2}-4a+20=a
2 daraja ko‘rsatkichini \sqrt{a} ga hisoblang va a ni qiymatni oling.
a^{2}-4a+20-a=0
Ikkala tarafdan a ni ayirish.
a^{2}-5a+20=0
-5a ni olish uchun -4a va -a ni birlashtirish.
a=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 20}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -5 ni b va 20 ni c bilan almashtiring.
a=\frac{-\left(-5\right)±\sqrt{25-4\times 20}}{2}
-5 kvadratini chiqarish.
a=\frac{-\left(-5\right)±\sqrt{25-80}}{2}
-4 ni 20 marotabaga ko'paytirish.
a=\frac{-\left(-5\right)±\sqrt{-55}}{2}
25 ni -80 ga qo'shish.
a=\frac{-\left(-5\right)±\sqrt{55}i}{2}
-55 ning kvadrat ildizini chiqarish.
a=\frac{5±\sqrt{55}i}{2}
-5 ning teskarisi 5 ga teng.
a=\frac{5+\sqrt{55}i}{2}
a=\frac{5±\sqrt{55}i}{2} tenglamasini yeching, bunda ± musbat. 5 ni i\sqrt{55} ga qo'shish.
a=\frac{-\sqrt{55}i+5}{2}
a=\frac{5±\sqrt{55}i}{2} tenglamasini yeching, bunda ± manfiy. 5 dan i\sqrt{55} ni ayirish.
a=\frac{5+\sqrt{55}i}{2} a=\frac{-\sqrt{55}i+5}{2}
Tenglama yechildi.
\sqrt{\left(\frac{5+\sqrt{55}i}{2}\right)^{2}-4\times \frac{5+\sqrt{55}i}{2}+20}=\sqrt{\frac{5+\sqrt{55}i}{2}}
\sqrt{a^{2}-4a+20}=\sqrt{a} tenglamasida a uchun \frac{5+\sqrt{55}i}{2} ni almashtiring.
\frac{1}{2}\left(10+2i\times 55^{\frac{1}{2}}\right)^{\frac{1}{2}}=\left(\frac{5}{2}+\frac{1}{2}i\times 55^{\frac{1}{2}}\right)^{\frac{1}{2}}
Qisqartirish. a=\frac{5+\sqrt{55}i}{2} tenglamani qoniqtiradi.
\sqrt{\left(\frac{-\sqrt{55}i+5}{2}\right)^{2}-4\times \frac{-\sqrt{55}i+5}{2}+20}=\sqrt{\frac{-\sqrt{55}i+5}{2}}
\sqrt{a^{2}-4a+20}=\sqrt{a} tenglamasida a uchun \frac{-\sqrt{55}i+5}{2} ni almashtiring.
\frac{1}{2}\left(10-2i\times 55^{\frac{1}{2}}\right)^{\frac{1}{2}}=\left(-\frac{1}{2}i\times 55^{\frac{1}{2}}+\frac{5}{2}\right)^{\frac{1}{2}}
Qisqartirish. a=\frac{-\sqrt{55}i+5}{2} tenglamani qoniqtiradi.
a=\frac{5+\sqrt{55}i}{2} a=\frac{-\sqrt{55}i+5}{2}
\sqrt{a^{2}-4a+20}=\sqrt{a} boʻyicha barcha yechimlar roʻyxati.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}