x uchun yechish
x=\frac{231\sqrt{2}}{178}+\frac{183}{89}\approx 3,891479398
Grafik
Baham ko'rish
Klipbordga nusxa olish
\sqrt{98}\left(2x-3\right)=6\left(x+4\right)
x qiymati -4 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x+4 ga ko'paytirish.
7\sqrt{2}\left(2x-3\right)=6\left(x+4\right)
Faktor: 98=7^{2}\times 2. \sqrt{7^{2}\times 2} koʻpaytmasining kvadrat ildizini \sqrt{7^{2}}\sqrt{2} kvadrat ildizlarining koʻpaytmasi sifatida qayta yozing. 7^{2} ning kvadrat ildizini chiqarish.
14x\sqrt{2}-21\sqrt{2}=6\left(x+4\right)
7\sqrt{2} ga 2x-3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
14x\sqrt{2}-21\sqrt{2}=6x+24
6 ga x+4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
14x\sqrt{2}-21\sqrt{2}-6x=24
Ikkala tarafdan 6x ni ayirish.
14x\sqrt{2}-6x=24+21\sqrt{2}
21\sqrt{2} ni ikki tarafga qo’shing.
\left(14\sqrt{2}-6\right)x=24+21\sqrt{2}
x'ga ega bo'lgan barcha shartlarni birlashtirish.
\left(14\sqrt{2}-6\right)x=21\sqrt{2}+24
Tenglama standart shaklda.
\frac{\left(14\sqrt{2}-6\right)x}{14\sqrt{2}-6}=\frac{21\sqrt{2}+24}{14\sqrt{2}-6}
Ikki tarafini 14\sqrt{2}-6 ga bo‘ling.
x=\frac{21\sqrt{2}+24}{14\sqrt{2}-6}
14\sqrt{2}-6 ga bo'lish 14\sqrt{2}-6 ga ko'paytirishni bekor qiladi.
x=\frac{231\sqrt{2}}{178}+\frac{183}{89}
24+21\sqrt{2} ni 14\sqrt{2}-6 ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}