x uchun yechish
x=5
x=0
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(\sqrt{9x+4}\right)^{2}=\left(\sqrt{7x+1}+1\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
9x+4=\left(\sqrt{7x+1}+1\right)^{2}
2 daraja ko‘rsatkichini \sqrt{9x+4} ga hisoblang va 9x+4 ni qiymatni oling.
9x+4=\left(\sqrt{7x+1}\right)^{2}+2\sqrt{7x+1}+1
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(\sqrt{7x+1}+1\right)^{2} kengaytirilishi uchun ishlating.
9x+4=7x+1+2\sqrt{7x+1}+1
2 daraja ko‘rsatkichini \sqrt{7x+1} ga hisoblang va 7x+1 ni qiymatni oling.
9x+4=7x+2+2\sqrt{7x+1}
2 olish uchun 1 va 1'ni qo'shing.
9x+4-\left(7x+2\right)=2\sqrt{7x+1}
Tenglamaning ikkala tarafidan 7x+2 ni ayirish.
9x+4-7x-2=2\sqrt{7x+1}
7x+2 teskarisini topish uchun har birining teskarisini toping.
2x+4-2=2\sqrt{7x+1}
2x ni olish uchun 9x va -7x ni birlashtirish.
2x+2=2\sqrt{7x+1}
2 olish uchun 4 dan 2 ni ayirish.
\left(2x+2\right)^{2}=\left(2\sqrt{7x+1}\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
4x^{2}+8x+4=\left(2\sqrt{7x+1}\right)^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(2x+2\right)^{2} kengaytirilishi uchun ishlating.
4x^{2}+8x+4=2^{2}\left(\sqrt{7x+1}\right)^{2}
\left(2\sqrt{7x+1}\right)^{2} ni kengaytirish.
4x^{2}+8x+4=4\left(\sqrt{7x+1}\right)^{2}
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
4x^{2}+8x+4=4\left(7x+1\right)
2 daraja ko‘rsatkichini \sqrt{7x+1} ga hisoblang va 7x+1 ni qiymatni oling.
4x^{2}+8x+4=28x+4
4 ga 7x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4x^{2}+8x+4-28x=4
Ikkala tarafdan 28x ni ayirish.
4x^{2}-20x+4=4
-20x ni olish uchun 8x va -28x ni birlashtirish.
4x^{2}-20x+4-4=0
Ikkala tarafdan 4 ni ayirish.
4x^{2}-20x=0
0 olish uchun 4 dan 4 ni ayirish.
x\left(4x-20\right)=0
x omili.
x=0 x=5
Tenglamani yechish uchun x=0 va 4x-20=0 ni yeching.
\sqrt{9\times 0+4}=\sqrt{7\times 0+1}+1
\sqrt{9x+4}=\sqrt{7x+1}+1 tenglamasida x uchun 0 ni almashtiring.
2=2
Qisqartirish. x=0 tenglamani qoniqtiradi.
\sqrt{9\times 5+4}=\sqrt{7\times 5+1}+1
\sqrt{9x+4}=\sqrt{7x+1}+1 tenglamasida x uchun 5 ni almashtiring.
7=7
Qisqartirish. x=5 tenglamani qoniqtiradi.
x=0 x=5
\sqrt{9x+4}=\sqrt{7x+1}+1 boʻyicha barcha yechimlar roʻyxati.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}